### Differences between High Flux Dialysis versus High Efficiency Online Hemodiafilteration in Diffusive and Convective Reduction Ratio

#### Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

#### By

May Abd Elaziz Abd Elaziz Elhashash

M.B.B.Ch Cairo University

## Supervised by

# **Prof. Hesham Mohamed Elsayed**

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

# **Dr. Hussein Sayed Hussein**

Assistant Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2018



سورة البقرة الآية: ٣٢

# Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my deepest gratitude and appreciation to **Prof. Hesham Mohamed Elsayed**, Professor of Internal Medicine, Faculty of Medicine - Ain Shams University, who initiated and designed the subject of this thesis, for his kindness, over available, fatherly attitude and untiring supervision, helpful criticism and support during the whole work.

My extreme thanks and gratefulness to **Prof. Eman Elgohary,** Professor of Clinical Pathology, Faculty of Medicine - Ain Shams University, I'm much grateful for her patience and strict supervision and revision of practical part of this work.

I would like also to thank with all appreciation **Dr. Hussein Sayed Hussein,** Assistant Professor of Internal Medicine, Faculty of Medicine - Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I would like to thank all members of my family, specially my **Parents** and my **Husband**, for their care and support.

## **List of Contents**

| Subject                        | Page No. |
|--------------------------------|----------|
| List of Abbreviations          | i        |
| List of Tables                 | iii      |
| List of Figures                | iv       |
| Introduction                   | 1        |
| Aim of the Work                | 3        |
| Review of Literature           |          |
| End Stage Renal Disease (ESRD) | 4        |
| Hemodialysis Modalities        | 14       |
| High Flux Dialyzer             | 32       |
| Adequacy of Dialysis           | 44       |
| Hemodiafilteration (HDF)       | 49       |
| Patients and methods           | 77       |
| Results                        | 83       |
| Discussion                     | 95       |
| Summary                        | 101      |
| References                     | 103      |
| Arabic Summary                 |          |

#### **List of Abbreviations**

## Abbrev. Full-term

**AGE** : Advanced glycation end-products

**B2M** : Beta-2 microglobulin

**BFRs** : Blood flow rates

Ca : Calcium

**CAVH** : Continuous arteriovenous hemofiltration

**CAVHDF** : Continuous hemodiafiltration

**CBC** : Complete blood count

**CKD** : Chronic kidney disease

**CRRT** : Contentious renal replacement therapy

**CVVH** : Continuous venovenous hemofiltration

**CVVHD** : Continuous venovenous hemodialysis

**CVVHDF**: Continuous venovenous hemodiafiltration

**DM** : Diabetes mellitus

**DOPPS**: Dialysis Outcomes and Practice Patterns Study

**EPO** : Erythropoetin

**ESHOL** : On-line Haemodiafiltration Survival Study

**ESKD** : End-stage kidney disease

**ESRD** : End-stage renal disease

**GFR** : Glomerular filtration rate

**HD** : Hemodialysis

**HEMO** : Hemodialysis

**HE-OL HDF**: High-efficiency online hemodiafiltration

**HPM**: High performance membrane

**HTN** : Hypertension

**IHD** : Ischemic heart disease

**JSDT** : Japanese Society of Dialysis Therapy

**K** : Potassium

**KDIGO**: Kidney Disease Improving Global Outcomes

**LF** : Low-flux

**LVH** : Left ventricular hypertrophy

Na : Sodium

**PCR** : Protein catabolic rate

**Qb** : Blood flow rate

**Qd** : Dialysate flow rate

**SCUF** : Slow continuous ultrafiltration

**SCUF** : Slow Continuous Ultrafiltration

**SD** : Standard deviation

**SLED** : Slow low-efficiency diffusion hemodialysis

**SPSS** : Statistical package for social science

**TMP** : Transmembrane pressure

**TNF-** $\alpha$ : Tumor necrosis factor- $\alpha$ 

**UF** : Ultrafiltration

**UFR** : Ultrafiltration rate

**URR** : Urea Reduction Ratio

## **List of Tables**

| Cable V            | lo. Eitle Page V                                                                                 | lo. |
|--------------------|--------------------------------------------------------------------------------------------------|-----|
| <b>Table (1):</b>  | Frequency of Primary Disease causing End-<br>Stage Renal Disease                                 | 8   |
| <b>Table (2):</b>  | Comparison of techniques                                                                         | 31  |
| <b>Table (3):</b>  | Dialyzer classification                                                                          | 37  |
| <b>Table (4):</b>  | Classification of solutes molecular weight                                                       | 40  |
| <b>Table (5):</b>  | Relative advantages and disadvantages of fluid reinfusion site.                                  | 64  |
| <b>Table (6):</b>  | Demographic characteristics of the studied cases                                                 | 83  |
| <b>Table (7):</b>  | Basal laboratory findings of the studied cases                                                   | 84  |
| <b>Table (8):</b>  | Serum $\beta 2$ microglobulin ( $\mu g/ml$ ) among the studied cases                             | 85  |
| <b>Table (9):</b>  | Blood Urea (mg/dl) among the studied cases                                                       | 87  |
| <b>Table</b> (10): | Blood pump (Qb), dialysate flow(Qd) and TMP among the studied cases                              | 89  |
| Table (11):        | Correlation between serum β2 microglobulin reduction and other variables among the studied cases | 92  |

# **List of Figures**

| Figure No           | v. Eitle                                                                                     | ₽age No. |
|---------------------|----------------------------------------------------------------------------------------------|----------|
| Figure (1):         | A CKD population study perform<br>Morocco presenting percentiles for re-<br>estimates of GFR | epeated  |
| <b>Figure (2):</b>  | The latest overview about kidney care in all regions of the world                            |          |
| Figure (3):         | Prognosis of CKD by GFR albuminuria categories                                               |          |
| <b>Figure (4):</b>  | An integrated care continuum for that is consistent with the chronic model.                  | c care   |
| <b>Figure (5):</b>  | A proposed step-by-step approach t prepare patients for dialysis                             | -        |
| Figure (6):         | Movement of solutes by different convection and adsorption                                   |          |
| <b>Figure (7):</b>  | Blood and dialysate circuits                                                                 | 21       |
| Figure (8):         | Effect of increasing blood flow on clearance                                                 |          |
| Figure (9):         | Different Hemodialysis Techniques .                                                          | 27       |
| <b>Figure (10):</b> | Cross Section of a Dialyzer                                                                  | 33       |
| <b>Figure</b> (11): | Scanning electron microscopy conventional low-flux-membrane liber (Panel A)                  | hollow   |
| Figure (12):        | A synthetic high-flux-membrane liber (Panel B)                                               |          |

#### List of Figures

| <b>Figure (13):</b> | Distribution of the use of various forms of                                           |      |
|---------------------|---------------------------------------------------------------------------------------|------|
|                     | dialysis therapy.                                                                     | . 50 |
| <b>Figure (14):</b> | Classic HDF                                                                           | 59   |
| <b>Figure (15):</b> | On-Line hemodiafiltration                                                             | 59   |
| <b>Figure (16):</b> | Push-pull HDF                                                                         | 60   |
| <b>Figure (17):</b> | Double high-flux HDF and paired filtration dialysis with endogenous reinfusion        | 60   |
| <b>Figure (18):</b> | Mid-dilution HDF                                                                      | 65   |
| <b>Figure (19):</b> | Pre-dilution and Post-dilution HDF                                                    | 65   |
| <b>Figure (20):</b> | Mixed-dilution HDF                                                                    | 66   |
| <b>Figure (21):</b> | Benefits of online hemodiafiltration                                                  | .74  |
| <b>Figure (22):</b> | Serum β2 microglobulin among the studied cases                                        | . 86 |
| <b>Figure (23):</b> | Blood Urea among the studied cases                                                    | 88   |
| <b>Figure (24):</b> | Blood Pump among the studied cases                                                    | 90   |
| <b>Figure (25):</b> | Dialysate flow among the studied cases                                                | 90   |
| <b>Figure (26):</b> | TMP among the studied cases                                                           | 91   |
| <b>Figure (27):</b> | Correlation between β2 microglobulin reduction and its predialysis level in HF group  | . 93 |
| <b>Figure (28):</b> | Correlation between β2 microglobulin reduction in HF group and predialysis blood BUN  | . 94 |
| <b>Figure (29):</b> | Correlation between β2 microglobulin reduction in HDF group and predialysis blood BUN | . 94 |

#### **Abstract**

Background: Several epidemiological studies performed in recent decades based on large databases suggest that convective treatments may be superior at reducing morbidity and mortality in dialysis patients. HDF has also been reported to improve beta2- microglobulin (\( \beta 2-m \)), phosphate and urea removal. Some others studies have reported better anaemia correction and lower inflammation when using HDF. The main disadvantages of HDF are its cost and the loss of albumin. Aim of the Work: The objective of the study is to compare between efficiency of dialysis sessions of high flux dialysis and HE-OL HDF in diffusive and convective reduction ratio of urea and \( \mathbb{G} 2 \) microglobulin by using them as an indicators. Patients and methods: This observational cross sectional study was conducted on 22 prevalent hemodialysis patients attending at hemodialysis unit of Ain Shams University specialized hospital. The included patients are clinically stable on thrice weekly hemodialysis sessions for 4 hours per session, performing both high flux hemodialysis sessions alternating with high efficiency online hemodiafilteration sessions. Results: The study showed that There was more significant reduction ratio in serum β2 microglobulin in HDF session (82.2±3.4%) than in HF session (67.4±6.5%) with (p value <0.001). Also, there was more significant reduction ratio in blood urea in HDF session (82.2±5.0 %) than in HF session (76.0±5.9%) with p value < 0.001 Conclusion: The results of this study confirm the experience of other investigators that routine on-line hemodiafiltration can be performed safely in a large group of patients. Our results also show that hemodiafiltration provides superior solute removal to high-flux hemodialysis over a wide range of solute sizes for blood flow rates in the range of 250 to 400 ml/min. **Recommendations:** Further studies on a larger scale of patients are needed to confirm the results obtained by this work.

**Key words:** high flux dialysis, high efficiency online hemodiafileration, diffusive, convective reduction ratio

#### Introduction

Ithough it was not until 1960s that long term dialysis in a clinical setting become a reality, dialysis as a treatment for renal failure had been the focus of interest for some time, it is difficult now to imagine that less than 50 years ago patients with ESRD had only one prognosis, death. Dialysis Involves bidirectional movement of molecules across a semipermeable membrane (*Ahmad*, 2009).

Hemodialysis (HD) is a dynamic process, which occurs during movement of low molecular weight water soluble substances through a semipermeable membrane, Transport across the membranes of low-flux (LF) dialyzers is based mainly on diffusion and through the membranes of high-flux (HF) dialyzers, diffusion and convection (*Sobaszek-Pitas et al.*, 2014).

The mortality rate of patients on maintenance dialysis remains alarmingly high, at approximately 15-20% per year. Increasing dialyzer urea clearance has not been shown to improve survival and hence interest has shifted towards convective therapies, such as hemodiafiltration (HDF) which can remove middle molecular weight uremic toxins, which have been suggested to increase mortality in patients with end-stage kidney disease (*Basile et al.*, 2017).

Because of incomplete removal of uremic toxins, 90% of hemodialysis patients reveal symptoms of pathologic amyloidosis caused by \( \beta 2 \) microglobulin after five years of dialysis (*Oshvandi et al.*, 2014).

HDF combines diffusion and convection. The large convective volumes that are generated using high-flux membranes are replaced with substitution fluid, from either commercially available bags or using ultrapure dialysis fluid in a technique known as online HD (*Vilar et al.*, 2009).

HDF is a treatment designed to remove accumulated metabolic products from blood by a combination of diffusive convective through transport a semi-permeable of high-flux type. membrane Fluid is removed ultrafiltration and the volume of filtered fluid exceeding the desired weight loss is replaced by sterile, pyrogen-free infusion solution. HDF provides a solute elimination of high molecular weight molecules better than HD (Tattersall & Ward, 2013).

## **Aim of the Work**

The objective of the study is to compare between efficiency of dialysis sessions of high flux dialysis and HE-OL HDF in diffusive and convective reduction ratio of urea and \( \mathbb{B} 2 \) microglobulin by using them as an indicators.

# **End Stage Renal Disease (ESRD)**

CKD patients are widely prevalent, and the number of end-stage kidney disease (ESKD) patients is still increasing (*Kimura*, 2016).

ESKD patients require cost-prohibitive kidney replacement therapy. Moreover, CKD patients are highly vulnerable, and the risk of cardiovascular events and death increases with the progression of CKD stages. Thus, it is critical to predict their risk for the progression to ESKD in CKD patients to avoid these unfavorable situations (*Kimura*, 2016).

#### **DEFINITION**

CKD is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health.

The addition of 'with implications for health' is intended to reflect the notion that a variety of abnormalities of kidney structure or function may exist, but not all have implications for health of individuals, and therefore need to be contextualized (*KDIGO*, 2012).

#### **Mechanism (pathophysiology)**

Nephrons are generated in weeks 12–36 of gestation in humans, with a mean of 950,000 nephrons per kidney (with a range of  $\sim$ 200,000 to >2.5 million) (*Bertram et al.*, 2011).

No new nephrons can be generated after this period. During growth, the available nephrons increase in size to accommodate increased renal demands. Furthermore, GFR decreases with age (*Brenner et al.*, 1982).

Nephron loss, for example owing to injury or donation of one of the kidneys, can have hypertrophic effect on the remaining nephrons (*Brenner et al.*, 1982).

This nephron adaptability allows for continued normal clearance of plasma solutes. Plasma levels of substances such as urea and creatinine start to show measurable increases only after total GFR has decreased to 50% (*Schnaper*, 2014).

The plasma creatinine value will approximately double with a 50% reduction in GFR. For example, a rise in plasma creatinine from a baseline value of 0.6 mg/dL to 1.2 mg/dL in a patient, although still within the adult reference range, actually represents a loss of 50% of functioning nephron mass (*Schnaper*, 2014).

#### **Aging and renal function**

The GFR peaks during the third decade of life at approximately 120 mL/min/1.73 m2; it then undergoes an annual mean decline of approximately 1 mL/min/y/1.73 m2, reaching a mean value of 70 mL/min/1.73 m2 at age 70 years (*Hallan*, 2012).