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Abstract 

 
Background 
The PI3K/AKT/mTOR pathway alterations have significant roles in the 

development, progression and metastatic potential of breast cancer in 

addition to enhancing resistance to many of the drugs used to control 

breast cancer, specially anti hormonal therapies. In this study we aimed to 

define the correlation between the PI3K mutations and the expression of 

the phosphorylated forms of different downstream molecules of this 

pathway in the samples of Egyptian patients with luminal breast cancer.  

 

Methods 
Next generation sequencing was used to detect mutations in the PIK3CA 

hotspots (in exons 10 and 21). Immunohistochemistry (IHC) was 

performed on TMA blocks prepared from samples of 35 operable luminal 

(ER positive and HER2 negative) breast cancer patients who presented 

for postoperative treatment at Cairo University hospitals between 2007 

and 2011. The intensity and the percentage of stained tumor cells were 

taken into consideration in defining high versus low biomarker 

expression. The cytoplasmic and nuclear stainings were graded 

separately. Correlation was done between PI3K mutations and the IHC 

expression of pAKT, LKB1, p4EBP1 and pS6 ribosomal protein (pS6RP) 

expression with the clinico-pathologic parameters using Pearson’s chi-

square test. Kaplan-Meier (KM) method was used to estimate disease free 

survival (DFS) and the difference between the subgroups was evaluated 

with log-rank test. 

 

Results 
Thirty two cases were assessable for LKB1 and pAKT, 33 for p4EBP1 

and pS6RP and 24 were assessed for PI3K mutations. Median age at 

diagnosis was 51.3 years (range: 25 to 82 years). Tumors were larger than 

20 mm in 79.2% and 57.9% had axillary lymph node (LN) metastasis. 

Only 3.5% of the patients had SBR grade I tumors, 71.9% grade II tumors 

and 24.6% grade III tumors. Estrogen receptors (ER) were found to be 

negative in 6 patients after central pathology review. Nuclear LKB1, 

cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear p4EBP1 

and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%, 

68.8%, 42.4% and 57.6% respectively. PIK3CA mutations were found in 

7 patients (29.2%).  
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PI3K mutations were correlated with decreased cytoplasmic pAKT 

(p=0.04) and increased nuclear pAKT expression (p=0.10). There was a 

tendency towards an inverse correlation between PI3K mutations and the 

expression of pS6RP (p=0.10) and p4EBP1 (p=0.19).  

Nuclear LKB1 expression in tumor cells was a marker of good prognosis. 

It was associated with smaller tumors (p=0.05), more ER positivity 

(p=0.08) and PR positivity (p=0.002). In the KM model patients with 

high nuclear LKB1 had longer DFS (HR=0.36; 95%CI: 0.15-1.10; 

p=0.08). Nuclear pAKT high expression also carried a tendency towards 

longer DFS (HR=0.51; 95%CI: 0.11-1.16; p=0.13). The expression of 

p4EBP1, pS6RP and the PI3K mutational status didn't carry any 

prognostic significance in early breast cancer patients.  

 

Conclusion 
Among the studied biomarkers only nuclear expression of LKB1 and 

pAKT tended to predict better survival in breast cancer patients. PI3K 

mutation was correlated with the expression of the downstream molecules 
 

Keywords: 

(Breast cancer, PI3K/AKT/mTOR, Hormonal treatment) 
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PI3K/AKT/mTOR pathway and breast cancer 

 

Introduction 

In 1975, an antibiotic metabolite produced by Streptomyces 

hygroscopicus bacteria was discovered in the soil of Rapa Nui Island in 

the South Pacific. It was named "rapamycin" after its place of discovery 

(Vezina et al., 1975). In addition to its antibacterial and antifungal 

activity, rapamycin was also proved to have an immunosuppressive effect 

(Martel et al., 1977). In the 1990s molecular studies have discovered the 

target of rapamycin (TOR) and in 1994; the mammalian analogue was 

identified (mTOR) (Brown et al., 1994). Rapamycin was subsequently 

approved for the prophylaxis of rejection after renal transplantation, as it 

blocks the signal transduction pathways required for the activation of the 

helper T cells and that opened the way for researchers in different fields 

trying to show us the different functions of mTOR in various 

physiological and pathological conditions. The mTOR pathway integrates 

signals from nutrients, energy status and extracellular growth factors to 

regulate many processes, including cell cycle progression, angiogenesis, 

ribosome biogenesis, and metabolism. (Azim et al., 2010, Laplante and 

Sabatini, 2009).  

Growth and proliferation of normal and malignant cells is mediated 

through the binding of certain growth factors (as insulin-like growth 

factor, epidermal growth factor and vascular endothelial growth factor) to 

their trans-membrane receptors and activating specific enzymes called 

tyrosine kinases. Those tyrosine kinases, through series of 

phosphorylation cascades including phosphoinositide 3-kinase 

(PI3K)/AKT induce signal transduction to the nucleus. Activated AKT 

can promote proliferation and growth via several mechanisms, one of the 

most important is the mTOR activation. MTOR can regulate (through its 

downstream effectors) cellular nutrient metabolism, angiogenesis, 

ribosome biogenesis, cell growth, survival and proliferation. (Foster and 

Fingar, 2010, Azim et al., 2010) 

Several studies have shown a connection between mTOR deregulation 

and different types of malignancies and in different stages of 
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carcinogenesis (Zoncu et al., 2011, Fruman and Rommel, 2014). As a 

result of such discoveries, the PI3K/AKT/mTOR axis was recognized as 

an important target for anti-cancer therapies and many new drugs 

inhibiting this pathway were introduced to cancer care in the last decades. 

At the moment, mTOR inhibitors are approved for treatment of advanced 

RCC, advanced HR-positive breast cancer (combined with everolimus) 

and advanced neuroendocrine tumors (Kunz et al., 2013, Ciruelos et al., 

2013, Escudier et al., 2012). Ongoing trials are testing different inhibitors 

of PI3K/mTOR in almost all cancer types. However, the therapeutic 

benefit of mTOR inhibitors in the clinical setting is still limited by the 

absence of predictive markers for response in addition to the added 

toxicity. In the next chapters we will discuss the PI3K/AKT/mTOR 

signaling, mechanisms of mTOR activation, the structure of the mTOR 

complex and its physiological functions, the role of the 

PI3K/AKT/mTOR pathway in breast cancer and various clinical trials 

testing mTOR inhibitors in advanced breast cancer in addition to the 

efforts done to determine molecular biomarkers predictive of response. 
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Chapter 1 

The PI3K/AKT/MTOR upstream activators 

The main mechanism by which mTOR is activated is through the PI3K 

activation. PI3Ks family has 3 classes, the most important of which is the 

class I enzymes which are activated by the growth factors receptors 

(Katso et al., 2001). Class I PI3Ks are further classified to class IA 

enzymes, which are activated by receptor tyrosine kinases (RTKs), G 

protein coupled receptors (GPCRs) and RAS, and class IB enzymes, 

which are regulated only by GPCRs. 

Class IA PI3Ks consist of a p110 catalytic subunit and a p85 regulatory 

subunit (FIG. 2a). The regulatory subunit (p85) mediates receptor 

binding, activation, and localization of the enzyme to the cell membrane 

in response to growth factor binding. The activated p110 catalytic subunit 

phosphorylates phosphatidylinositol diphosphate (PIP2) to 

phosphatidylinositol triphosphate (PIP3) which is responsible for AKT 

activation.  

AKT (also known as protein kinase B (PKB)) is a serine-threonine 

protein kinase that has three isoforms: AKT1, AKT2 and AKT3. AKT 

activation is mediated by PIP3 that recruits AKT by translocating it  to 

the plasma membrane. The resulting conformational change in AKT 

exposes two crucial amino‑acid residues for phosphorylation (Stephens et 

al., 1998, Liu et al., 2009a). Activated AKT is responsible for 

phosphorylation of many proteins such as mTORC1, glycogen synthase 

kinase 3 and FOXOs (the forkhead box family of transcription factors) 

(Manning and Cantley, 2007).  

AKT can then activate mTOR by phosphorylating both Proline rich AKT 

substrate 40 kDa (PRAS40)  and tuberous sclerosis 2 protein (TSC2) to 

attenuate their inhibitory effects on mTOR (Inoki et al., 2002). 

 

MTOR structure and organization  

MTORs are a family of large (290 kDa, 2549 amino acids) serine-

threonine kinase that belongs to the phosphatidylinositol 3-kinase (PI3K) 
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related kinase super-family. The mTOR signaling receives inputs from 

five major intracellular and extracellular stimuli which are: growth 

factors, stress, energy status, oxygen, and amino acids. Different 

interactions with these stimuli regulate many major cellular processes, 

including protein and lipid synthesis, proliferation and autophagy. MTOR 

has 2 multi-protein complexes: mTORC1 and mTORC2. Figure 1 shows 

the signals affecting mTORC1 &2 and their functions. 

 

 
Figure 1: Different signals leading to mTOR activation and its results.(Laplante and 

Sabatini, 2012)  

 

MTORC1 has five components: mTOR, which is the catalytic subunit of 

the complex; regulatory-associated protein of mTOR (Raptor); 

mammalian lethal with Sec13 protein 8 (mLST8, also known as GbL); 

prolinerich AKT substrate 40 kDa (PRAS40); and DEP-domain-

containing mTOR-interacting protein (Deptor) (Peterson et al., 2009). 

RAPTOR and PRAS40 are specific to mTORC1, while the rest are shared 

with mTORC2 (Zoncu et al., 2011).  

Raptor, a 150 KDa protein is responsible for recruiting the downstream 

substrates of mTOR: p70 S6 kinase (S6K) and the translational repressor 

eIF4Ebinding protein 1 (4E-BP1) leading to stimulation of cell growth 

and proliferation (Beauchamp and Platanias, 2013). PRAS40 and Deptor 

are negative regulators of mTORC1 (Peterson et al., 2009). The role of 

mLST8 in the mTOR signaling is still unknown. 

MTORC2 consists of 6 different components: mTOR; rapamycin-

insensitive companion of mTOR (Rictor); mammalian stress-activated 

protein kinase interacting protein (mSIN1); protein observed with Rictor-

1 (Protor-1); mLST8; and Deptor. MTORC2 was originally thought to be 

insensitive to rapamycin (Sarbassov et al., 2004, Jacinto et al., 2004).  
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However, some cell types showed inhibition of mTORC2 signaling with 

long term treatment with rapamycin. There is evidence that mTORC2 

plays a role in stabilizing the cytoskeletal structure of the cell which 

determines the cell shape and knockdown of rictor resulted in the loss of 

actin polymerization and cell spreading (Sarbassov et al., 2004, Jacinto et 

al., 2004).  

MTORC2 signaling is insensitive to nutrients, but responds to growth 

factors as insulin via a PI3K dependent mechanism that is not clearlu 

understood (Laplante and Sabatini, 2013). One potential mechanism 

involves a novel role for ribosomes, as ribosomes are needed for 

mTORC2 activation and mTORC2 binds them in a PI3K-dependent 

fashion (Laplante and Sabatini, 2013, Zinzalla et al., 2011). 

 

MTORC2 can also regulate cell metabolism, survival, apoptosis, growth 

and proliferation by direct phosphorylation of AKT on Ser473 (Sarbassov 

et al., 2005). Similar to its role in mTORC1, Deptor negatively regulates 

mTORC2 activity (Peterson et al., 2009). 

Down regulators of the mTOR  

The tumor suppressor PTEN (phosphatase and tensin homologue) is the 

most important negative regulator of the PI3K signaling pathway. PTEN 

opposes the effect of PI3K by dephosphorylating PIP3 back into PIP2 and 

hence, reducing the intracellular levels of PIP3, decreasing AKT 

activation and balancing the cellular processes initiated by the PI3K 

signaling as proliferation and angiogenesis. Loss of PTEN results in 

unrestrained signaling by the PI3K pathway, leading to cancer (Cully et 

al., 2006). 

One of the most important upstream regulators of this pathway comes 

through tuberous sclerosis 1 (TSC1) and TSC2 which acts as a GTPase-

activating protein (GAP) for the Ras homolog enriched in brain (Rheb) 

GTPase. The GTP-bound form of Rheb directly interacts with mTORC1 

and strongly stimulates its kinase activity. As a Rheb GAP, TSC1/2 

negatively regulates mTORC1 by converting Rheb into its inactive GDP-

bound state (Inoki et al., 2003, Tee et al., 2003). 

 


