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Abstract

Background

The PISBK/AKT/mTOR pathway alterations have significant roles in the
development, progression and metastatic potential of breast cancer in
addition to enhancing resistance to many of the drugs used to control
breast cancer, specially anti hormonal therapies. In this study we aimed to
define the correlation between the PI3K mutations and the expression of
the phosphorylated forms of different downstream molecules of this
pathway in the samples of Egyptian patients with luminal breast cancer.

Methods

Next generation sequencing was used to detect mutations in the PIK3CA
hotspots (in exons 10 and 21). Immunohistochemistry (IHC) was
performed on TMA blocks prepared from samples of 35 operable luminal
(ER positive and HER2 negative) breast cancer patients who presented
for postoperative treatment at Cairo University hospitals between 2007
and 2011. The intensity and the percentage of stained tumor cells were
taken into consideration in defining high versus low biomarker
expression. The cytoplasmic and nuclear stainings were graded
separately. Correlation was done between PI3K mutations and the IHC
expression of pAKT, LKB1, p4EBP1 and pS6 ribosomal protein (pS6RP)
expression with the clinico-pathologic parameters using Pearson’s chi-
square test. Kaplan-Meier (KM) method was used to estimate disease free
survival (DFS) and the difference between the subgroups was evaluated
with log-rank test.

Results

Thirty two cases were assessable for LKB1 and pAKT, 33 for p4EBP1
and pS6RP and 24 were assessed for PI3K mutations. Median age at
diagnosis was 51.3 years (range: 25 to 82 years). Tumors were larger than
20 mm in 79.2% and 57.9% had axillary lymph node (LN) metastasis.
Only 3.5% of the patients had SBR grade | tumors, 71.9% grade Il tumors
and 24.6% grade 111 tumors. Estrogen receptors (ER) were found to be
negative in 6 patients after central pathology review. Nuclear LKB1,
cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear pAEBP1
and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%,
68.8%, 42.4% and 57.6% respectively. PIK3CA mutations were found in
7 patients (29.2%).
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PI13K mutations were correlated with decreased cytoplasmic pAKT
(p=0.04) and increased nuclear pAKT expression (p=0.10). There was a
tendency towards an inverse correlation between PI3K mutations and the
expression of pS6RP (p=0.10) and p4EBP1 (p=0.19).

Nuclear LKB1 expression in tumor cells was a marker of good prognosis.
It was associated with smaller tumors (p=0.05), more ER positivity
(p=0.08) and PR positivity (p=0.002). In the KM model patients with
high nuclear LKB1 had longer DFS (HR=0.36; 95%CI: 0.15-1.10;
p=0.08). Nuclear pAKT high expression also carried a tendency towards
longer DFS (HR=0.51; 95%CIl: 0.11-1.16; p=0.13). The expression of
p4EBP1, pS6RP and the PI3K mutational status didn't carry any
prognostic significance in early breast cancer patients.

Conclusion

Among the studied biomarkers only nuclear expression of LKB1 and
PAKT tended to predict better survival in breast cancer patients. PI3K
mutation was correlated with the expression of the downstream molecules

Keywords:
(Breast cancer, PISBK/AKT/mTOR, Hormonal treatment)
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PISK/AKT/mTOR pathway and breast cancer

Introduction

In 1975, an antibiotic metabolite produced by Streptomyces
hygroscopicus bacteria was discovered in the soil of Rapa Nui Island in
the South Pacific. It was named "rapamycin” after its place of discovery
(Vezina et al., 1975). In addition to its antibacterial and antifungal
activity, rapamycin was also proved to have an immunosuppressive effect
(Martel et al., 1977). In the 1990s molecular studies have discovered the
target of rapamycin (TOR) and in 1994; the mammalian analogue was
identified (mTOR) (Brown et al., 1994). Rapamycin was subsequently
approved for the prophylaxis of rejection after renal transplantation, as it
blocks the signal transduction pathways required for the activation of the
helper T cells and that opened the way for researchers in different fields
trying to show us the different functions of mTOR in various
physiological and pathological conditions. The mTOR pathway integrates
signals from nutrients, energy status and extracellular growth factors to
regulate many processes, including cell cycle progression, angiogenesis,
ribosome biogenesis, and metabolism. (Azim et al., 2010, Laplante and
Sabatini, 2009).

Growth and proliferation of normal and malignant cells is mediated
through the binding of certain growth factors (as insulin-like growth
factor, epidermal growth factor and vascular endothelial growth factor) to
their trans-membrane receptors and activating specific enzymes called
tyrosine kinases. Those tyrosine kinases, through series of
phosphorylation cascades including phosphoinositide 3-kinase
(PI3K)/AKT induce signal transduction to the nucleus. Activated AKT
can promote proliferation and growth via several mechanisms, one of the
most important is the mTOR activation. MTOR can regulate (through its
downstream effectors) cellular nutrient metabolism, angiogenesis,
ribosome biogenesis, cell growth, survival and proliferation. (Foster and
Fingar, 2010, Azim et al., 2010)

Several studies have shown a connection between mTOR deregulation
and different types of malignancies and in different stages of
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carcinogenesis (Zoncu et al., 2011, Fruman and Rommel, 2014). As a
result of such discoveries, the PIBK/AKT/mTOR axis was recognized as
an important target for anti-cancer therapies and many new drugs
inhibiting this pathway were introduced to cancer care in the last decades.
At the moment, mTOR inhibitors are approved for treatment of advanced
RCC, advanced HR-positive breast cancer (combined with everolimus)
and advanced neuroendocrine tumors (Kunz et al., 2013, Ciruelos et al.,
2013, Escudier et al., 2012). Ongoing trials are testing different inhibitors
of PI3BK/mTOR in almost all cancer types. However, the therapeutic
benefit of mMTOR inhibitors in the clinical setting is still limited by the
absence of predictive markers for response in addition to the added
toxicity. In the next chapters we will discuss the PI3BK/AKT/mTOR
signaling, mechanisms of mTOR activation, the structure of the mTOR
complex and its physiological functions, the role of the
PIBK/AKT/mTOR pathway in breast cancer and various clinical trials
testing mTOR inhibitors in advanced breast cancer in addition to the
efforts done to determine molecular biomarkers predictive of response.
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Chapter 1

The PISK/AKT/MTOR upstream activators

The main mechanism by which mTOR is activated is through the PI3K
activation. PI3Ks family has 3 classes, the most important of which is the
class | enzymes which are activated by the growth factors receptors
(Katso et al., 2001). Class | PI3Ks are further classified to class IA
enzymes, which are activated by receptor tyrosine kinases (RTKS), G
protein coupled receptors (GPCRs) and RAS, and class IB enzymes,
which are regulated only by GPCRs.

Class 1A PI3Ks consist of a p110 catalytic subunit and a p85 regulatory
subunit (FIG. 2a). The regulatory subunit (p85) mediates receptor
binding, activation, and localization of the enzyme to the cell membrane
in response to growth factor binding. The activated p110 catalytic subunit
phosphorylates phosphatidylinositol diphosphate (PIP2) to
phosphatidylinositol triphosphate (PIP3) which is responsible for AKT
activation.

AKT (also known as protein kinase B (PKB)) is a serine-threonine
protein kinase that has three isoforms: AKT1, AKT2 and AKT3. AKT
activation is mediated by PIP3 that recruits AKT by translocating it to
the plasma membrane. The resulting conformational change in AKT
exposes two crucial amino-acid residues for phosphorylation (Stephens et
al., 1998, Liu et al., 2009a). Activated AKT is responsible for
phosphorylation of many proteins such as mMTORCL1, glycogen synthase
kinase 3 and FOXOs (the forkhead box family of transcription factors)
(Manning and Cantley, 2007).

AKT can then activate mTOR by phosphorylating both Proline rich AKT
substrate 40 kDa (PRAS40) and tuberous sclerosis 2 protein (TSC2) to
attenuate their inhibitory effects on mTOR (Inoki et al., 2002).

MTOR structure and organization

MTORSs are a family of large (290 kDa, 2549 amino acids) serine-
threonine kinase that belongs to the phosphatidylinositol 3-kinase (P13K)
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related kinase super-family. The mTOR signaling receives inputs from
five major intracellular and extracellular stimuli which are: growth
factors, stress, energy status, oxygen, and amino acids. Different
interactions with these stimuli regulate many major cellular processes,
including protein and lipid synthesis, proliferation and autophagy. MTOR
has 2 multi-protein complexes: mTORC1 and mTORC2. Figure 1 shows
the signals affecting mTORC1 &2 and their functions.

T SN //\
(Rapamycin)-——— (LLI2))

/ \ \ Cell survival
biosynthesis
Autophagy Cytoskeletal

Cell cycle organization
progression

Figure 1: Different signals leading to mTOR activation and its results.(Laplante and
Sabatini, 2012)

MTORCL1 has five components: mTOR, which is the catalytic subunit of
the complex; regulatory-associated protein of mMTOR (Raptor);
mammalian lethal with Sec13 protein 8 (mMLSTS8, also known as GbL);
prolinerich AKT substrate 40 kDa (PRAS40); and DEP-domain-
containing mTOR-interacting protein (Deptor) (Peterson et al., 2009).
RAPTOR and PRAS40 are specific to mTORCL1, while the rest are shared
with mTORC2 (Zoncu et al., 2011).

Raptor, a 150 KDa protein is responsible for recruiting the downstream
substrates of MTOR: p70 S6 kinase (S6K) and the translational repressor
elF4Ebinding protein 1 (4E-BP1) leading to stimulation of cell growth
and proliferation (Beauchamp and Platanias, 2013). PRAS40 and Deptor
are negative regulators of mMTORCL1 (Peterson et al., 2009). The role of
mLST8 in the mTOR signaling is still unknown.

MTORC2 consists of 6 different components: mTOR; rapamycin-
insensitive companion of mMTOR (Rictor); mammalian stress-activated
protein kinase interacting protein (mSIN1); protein observed with Rictor-
1 (Protor-1); mLST8; and Deptor. MTORC2 was originally thought to be
Insensitive to rapamycin (Sarbassov et al., 2004, Jacinto et al., 2004).
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However, some cell types showed inhibition of mMTORC2 signaling with
long term treatment with rapamycin. There is evidence that mTORC2
plays a role in stabilizing the cytoskeletal structure of the cell which
determines the cell shape and knockdown of rictor resulted in the loss of
actin polymerization and cell spreading (Sarbassov et al., 2004, Jacinto et
al., 2004).

MTORC2 signaling is insensitive to nutrients, but responds to growth
factors as insulin via a PI3K dependent mechanism that is not clearlu
understood (Laplante and Sabatini, 2013). One potential mechanism
involves a novel role for ribosomes, as ribosomes are needed for
MTORC2 activation and mTORC2 binds them in a PI3K-dependent
fashion (Laplante and Sabatini, 2013, Zinzalla et al., 2011).

MTORC2 can also regulate cell metabolism, survival, apoptosis, growth
and proliferation by direct phosphorylation of AKT on Ser473 (Sarbassov
et al., 2005). Similar to its role in mMTORC1, Deptor negatively regulates
mTORC?2 activity (Peterson et al., 2009).

Down requlators of the mTOR

The tumor suppressor PTEN (phosphatase and tensin homologue) is the
most important negative regulator of the PI3K signaling pathway. PTEN
opposes the effect of PI3K by dephosphorylating PIP3 back into PIP2 and
hence, reducing the intracellular levels of PIP3, decreasing AKT
activation and balancing the cellular processes initiated by the PISK
signaling as proliferation and angiogenesis. Loss of PTEN results in
unrestrained signaling by the PI3K pathway, leading to cancer (Cully et
al., 2006).

One of the most important upstream regulators of this pathway comes
through tuberous sclerosis 1 (TSC1) and TSC2 which acts as a GTPase-
activating protein (GAP) for the Ras homolog enriched in brain (Rheb)
GTPase. The GTP-bound form of Rheb directly interacts with mTORC1
and strongly stimulates its kinase activity. As a Rheb GAP, TSC1/2
negatively regulates mTORC1 by converting Rheb into its inactive GDP-
bound state (Inoki et al., 2003, Tee et al., 2003).
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