Application of Partial Blade Pitch for Power Regulation of HAWT

By

Hazem Wahed Abd El Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
AEROSPACE ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

Application of Partial Blade Pitch for Power Regulation of HAWT

By

Hazem Wahed Abd El Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
AEROSPACE ENGINEERING

Supervised by

Dr. Basman Mohamed Nabil Elhadidi

Professor, Aerospace Department
Faculty of Engineering-Cairo University

FACULTY OF ENGINEERING CAIRO UNIVERSITY

GIZA, EGYPT

2015

Application of Partial Blade Pitch for Power Regulation of HAWT

By

Hazem Wahed Abd El Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
AEROSPACE ENGINEERING

Approved by the Examining Committee:	
Dr. Basman Mohamed Nabil Elhadidi	
Prof. Dr Gala Bahgat salem	Internal Examiner
Prof. Dr. Hamdy Kandil (German University In Cairo)	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

Engineer: Hazem Wahed Abd El Fattah

Date of Birth: 24 / 2 / 1987

Nationality: Egyptian

E-mail: hazemwahed@hotmail.com

Phone: +2 0100 7690310

Address: Cairo, Egypt

Registration Date: 1 / 10 / 2010

Awarding Date: / /

Degree: Master of Science

Department: Aerospace Engineering

Supervisors: Dr. Basman Mohamed Nabil Elhadidi

Examiners: Prof. Dr Galal Bahgat Salem (Faculty of Engineering Cairo University)

Prof. Dr Hamdi Kandil (German University in Cairo)

Dr. Basman Mohamed Nabil Elhadidi

Title of Thesis: Application of Partial Blade Pitch for Power Regulation of HAWT

Key Words: Aerodynamic, Wind Turbine

Summary: Partial blade pitch is investigated as a means for wind turbine power

regulation after the rated wind speed. Traditionally blades are pitched fully along the span, which is becoming increasingly difficult as the blades are getting longer. Since the power is generated from the outboard section, a partial blade twist of the outboard section is investigated. Two models are used in this study: (1) the BEM model and (2) the CFD technique. The BEM offers speed and versatility and is only used to explore the concept of partial twisting, whereas the CFD can examine effects of flow separation at the blade discontinuities caused by the partial twist. Further, two wind turbines

are investigated: (1) the NREL Phase VI and a small lab wind turbine.

The NREL VI turbine is examined to compare the model results to

published data, whereas the lab model was pursued to test in the lab in

future studies. The results found that it is possible to use partial blade

twisting for power regulations.

ACKNOWLEDGEMENT

I would like to thank all my family, my mother, brother, and father for their encouragement and help during this thesis. I wish for them all the best in their life.

I have great appreciation to my supervisor Dr. Basman Elhadidi for his technical advices, continuous support and deep revising that added a lot to the value of the work in this thesis.

Table of Content

CHAPTER 1	1
INTRODUCTION	1
1.1 Wind Turbine Torque	2
1.2 Literature Review	3
1.3 Analysis Methods	6
1.4 Analysis Sequence	7
1.5 Thesis Layout	7
CHAPTER 2	9
WIND TURBINE MODELS	9
2.1 Introduction	9
2.2 The Actuator Disk and the Betz Limit	9
2.3 Actuating Disk with Wake Rotation	10
2.4 Blade Element Momentum Theory (BEM)	11
2.5 BEM Correction	13
2.6 Application of BEM: Design of Small Wind Turbine	13
2.7 NREL Phase VI Wind Turbine	16
2.8 Computational Fluid Dynamics	17
2.9 CFD Software	17
2.10 ANSYS FLUENT	18
2.11 CFD Modeling and Problem Identification	20
CHAPTER 3	27
WIND TURBINE PERFORMANCE ANALYSIS	27
3.1 Introduction	27
3.2 Rotor Torque	27
3.3 Full Pitching and Partial Pitching	28
3.4 Rotor Performance Analysis	29

CHAPTER 4	52
CONCLUSION AND FUTURE WORKS	52
4.1 Conclusion	52
4.2 Future Works	53
REFERENCE LIST	54
APPENDIX A	56
S809 AIRFOIL COORDINATES	56
S809 AIRFOIL DATA	57
NREL PHASE VI BASIC MACHINE PARAMETERS	58
NREL PHASE VI CHORD AND TWIST DISTRIBUTION	59
NREL PHASE VI TEST MATRIX	60
NREL PHASE VI SEQUENCES H, I, AND J DESCRIPTION	61
SEQUENCE H TEST MATRIX	62
SEQUENCE I TEST MATRIX	63
SEQUENCE J TEST MATRIX	64
NREL PRESSURE TAPS	65
NREL PRESSURE COEFFICIENT	67
NREL Sequence H Pressure Coefficient CFD Full and Experimental	67
NREL Sequence I Pressure Coefficient CFD Full and Experimental	69
NREL Sequence J Pressure Coefficient CFD Full and Experimental	71
NREL Sequence H Pressure Coefficient CFD Full and Partial	73
NREL Sequence I Pressure Coefficient CFD Full and Partial	75
NREL Sequence J Pressure Coefficient CFD Full and Partial	77

NREL PHASE VI BLADE PRESSURE CONTOUR	
H Sequence Blade Pressure Contour	79
I Sequence Blade Pressure Contour	81
J Sequence Blade Pressure Contour	83
SMALL WIND TURBINE CONFIGURATION	85
Small Wind Turbine Assembly.	85
Small Wind Turbine Blade	85
Small Wind Turbine Hub	86
Pitch Adjustment shim	86
SMALL WIND TURBINE CFD PRESSURE COEFFICIENT	87
SWT 4 ° Pitch Angle Pressure Coefficient.	87
SWT 6 ° Pitch Angle Pressure Coefficient	90
SWT -2 ° Pitch Angle Pressure Coefficient.	93
SWT -4 ° Pitch Angle Pressure Coefficient	96
SWT -6 ° Pitch Angle Pressure Coefficient	99
SMALL WIND TURBINE BLADE PRESSURE CONTOUR	102
SWT 2 ° Pitch Angle Blade Pressure Contour	102
SWT 4 ° Pitch Angle Blade Pressure Contour	103
SWT 6 ° Pitch Angle Blade Pressure Contour	104
SWT -2 ° Pitch Angle Blade Pressure Contour	105
SWT -4 ° Pitch Angle Blade Pressure Contour	106
SWT -6° Pitch Angle Blade Pressure Contour	107

List of Tables

Table 1-1: P	ercentage of Partial Torque to Total Torque for NREL Phase VI	2
Table 2-1: G	rid Sensitivity Analysis Results for NREL and SWT	24
Table A-1:	S809 Airfoil Coordinates	56
Table A-2: 1	NREL Chord and Twist Distribution	59
Table A-3: 1	NREL Phase VI Test Matrix	60
Table A-4: 1	NREL Phase VI Sequence H Test Matrix	62
Table A-5: 1	NREL Phase VI Sequence I Test Matrix	63
Table A-6: 1	NREL Phase VI Sequence J Test Matrix	64
Table A-7: 1	NREL Phase VI Pressure Taps Chord Locations	66
	List of Figures	
Figure 1-1:	The Progress of Wind Turbine Size	1
Figure 1-2:	Torque Variation Wind Turbine Blade	2
Figure 1-3:	The MOD-2 Wind Turbine	4
Figure 1-4:	MOD-2 Full Span and Partial Span Pitch Comparison	4
Figure 1-5:	Envision Wind Turbine PP-2B	5
Figure 1-6:	Blade Partial Pitching.	6
Figure 2-1:	Wind Turbine Stream Tube	10
Figure 2-2:	Trajectory of Air Particle through an Actuator Disc	10
Figure 2-3:	Theoretical Maximum Power Coefficient with and without Wake Rotation	11
Figure 2-4:	Blade Geometry for Analysis of a Horizontal Axis Wind Turbine	12
Figure 2-5:	NREL Thick Airfoil Family	14
Figure 2-6:	Small Wind Turbine Chord and Twist Distributions	15
Figure 2-7:	SWT Power Curve calculated from HARP_OPT	15
Figure 2-8:	(a) NREL Phase VI wind Turbine, (b) NASA Ames Wind Tunnel	16
Figure 2-9:	Pressure Base Segregated Algorithm	19
Figure 2-10:	Different Domains for: (a) Full (b) Half Domain (c) One Third (Right)	20
Figure 2-11:	(a) SWT 1/3 Domain, (b) NREL Half Domain	21
Figure 2-12:	Domain Dimensions for: (a) SWT (b) NREL Phase VI (Right)	21
Figure 2-13.	Geometrical Domain for: (a) SWT and (b) NREL Phase VI	22

Figure 2-14: (a) Unstructured Mesh (b) Structured Mesh	22
Figure 2-15: Domain Mesh for: (a) SWT (b) NREL Phase VI	23
Figure 2-16: Mesh between Upper and Lower Domain Interface	23
Figure 2-17: Section View of the Volume Mesh Shows Prismatic Layers	24
Figure 2-18: Boundary Conditions for: (a) SWT (b) NREL	25
Figure 3-1: Torque Variation along NREL Blade Span at Different Speeds	28
Figure 3-2: (a) Blade Partial Pitching (b) Full Pitching.	28
Figure 3-3: NREL: (a) Power Curve, (b) Twist Distribution (c) Angle of Attack $v=7$ m/s	30
Figure 3-4: NREL Angle of Attack for 6 ° Pitch	32
Figure 3-5: Stream lines with and without Partial Pitching.	32
Figure 3-6: NREL Streamlines at 7 m/s for	33
Figure 3-7: NREL Streamlines at 15 m/s for	33
Figure 3-8: Radial location for NREL Blade	34
Figure 3-9: NREL H Sequence at 7 m/s	35
Figure 3-10: NREL I Sequence at 7 m/s	36
Figure 3-11: NREL J Sequence at 7 m/s	37
Figure 3-12: NREL H Sequence at 7 m/s	38
Figure 3-13: NREL I Sequence at 7 m/s	39
Figure 3-14: NREL J Sequence at 7 m/s	40
Figure 3-15: Deviation of NREL Full Pitch CFD from Experimental	42
Figure 3-16: Difference between NREL Partial Pitch and CFD Full pitch	42
Figure 3-17: SWT Rotor Speed Vs Wind Speed	43
Figure 3-18: SWT: (a) Power Curve, (b) Twist Distribution (c) Angle of Attack	44
Figure 3-19: SWT Streamlines at 5 m/s for	45
Figure 3-20: SWT Streamlines at 12 m/s for	45
Figure 3-21: SWT Streamlines at 5 m/s for	46
Figure 3-22: SWT Streamlines at 12 m/s for	46
Figure 3-23: Radial location for SWT Blade Station.	47
Figure 3-24: SWT Pressure Distribution for 2 ° at 5 m/s	48
Figure 3-25: SWT Pressure Distribution for 2 ° Full Pitch at 7 m/s	49
Figure 3-26: SWT Pressure Distribution for 2 ° at 12 m/s	50
Figure 3-27: Partial and Full Pitch difference for SWT	51

Figure A-1: NREL Phase VI Blade Planform	58
Figure A-2: Blade Surface Pressure and Five Hole Probe Locations	65
Figure A-3: NREL H Sequence Pressure Distribution at 10 m/s	67
Figure A-4: NREL H Sequence Pressure Distribution at 15 m/s	68
Figure A-5: NREL I Sequence Pressure Distribution at 10 m/s	69
Figure A-6: NREL I Sequence Pressure Distribution at 15 m/s	70
Figure A-7: NREL J Sequence Pressure Distribution at 10 m/s	71
Figure A-8: NREL J Sequence Pressure Distribution at 15 m/s	72
Figure A-9: NREL H Sequence Pressure Distribution at 10 m/s	73
Figure A-10: NREL H Sequence Pressure Distribution at 15 m/s	74
Figure A-11: NREL I Sequence Pressure Distribution at 10 m/s	75
Figure A-12: NREL I Sequence Pressure Distribution at 15 m/s	76
Figure A-13: NREL J Sequence Pressure Distribution at 10 m/s	77
Figure A-14: NREL J Sequence Pressure Distribution at 15 m/s	78
Figure A-15: NREL Blade Pressure Distribution at 7 m/s: (a) Full Pitch (b) Partial Pitch	79
Figure A-16: NREL Blade Pressure Distribution at 10 m/s: (a) Full Pitch (b) Partial Pitch	79
Figure A-17: NREL Blade Pressure Distribution at 15 m/s: (a) Full Pitch (b) Partial Pitch	80
Figure A-18: NREL Blade Pressure at 7 m/s: (a) Full Pitch (b) Partial Pitch	81
Figure A-19: NREL Blade Pressure Distribution at 10 m/s: (a) Full Pitch (b) Partial Pitch	81
Figure A-20: NREL Blade Pressure Distribution at 15 m/s: (a) Full Pitch (b) Partial Pitch	82
Figure A-21: NREL Blade Pressure Distribution at 7 m/s: (a) Full Pitch (b) Partial Pitch	83
Figure A-22: NREL Blade Pressure Distribution at 10 m/s: (a) Full Pitch (b) Partial Pitch	83
Figure A-23: NREL Blade Pressure Distribution at 15 m/s: (a) Full Pitch (b) Partial Pitch	84
Figure A-24: SWT (a) Assembly (b) Assembly Parts	85
Figure A-25: SWT Blade	85
Figure A-26: SWT Hub	86
Figure A-27: SWT Pitch Adjustment Shim	86
Figure A-28: SWT Pressure Distribution for 4 ° at 5 m/s	87
Figure A-29: SWT Pressure Distribution for 4 ° at 7 m/s	88
Figure A-30: SWT Pressure Distribution for 4 ° at 12 m/s	89
Figure A-31: SWT Pressure Distribution for 6 ° at 5 m/s	90
Figure A-32: SWT Pressure Distribution for 6 ° at 7 m/s	91

Figure A-33: SWT Pressure Distribution for 6 ° at 12 m/s	92
Figure A-34: SWT Pressure Distribution for -2° at 5 m/s	93
Figure A-35: SWT Pressure Distribution for -2° at 7 m/s	94
Figure A-36: SWT Pressure Distribution for -2 ° at 12 m/s	95
Figure A-37: SWT Pressure Distribution for -4 ° at 5 m/s	96
Figure A-38: SWT Pressure Distribution for -4 ° at 7 m/s	97
Figure A-39: SWT Pressure Distribution for -4 ° at 12 m/s	98
Figure A-40: SWT Pressure Distribution for -6° at 5 m/s	99
Figure A-41: SWT Pressure Distribution for -6° at 7 m/s	100
Figure A-42: SWT Pressure Distribution for -6° at 12 m/s	101
Figure A-43: SWT Pressure Contour for 2°	102
Figure A-44: SWT Pressure Contour for 4 °	103
Figure A-45: SWT Pressure Contour for 6 °	104
Figure A-46: SWT Pressure Contour for -2°	105
Figure A-47: SWT Pressure Contour for -4 °	106
Figure A-48: SWT Pressure Contour for -6°	107

Abstract

Partial blade pitch is investigated as a means for wind turbine power regulation after the rated wind speed. Traditionally blades are pitched fully along the span, which is becoming increasingly difficult as the blades are getting longer. Since the power is generated from the outboard section, a partial blade twist of the outboard section is investigated. Two models are used in this study: (1) the BEM model and (2) the CFD technique. The BEM offers speed and versatility and is only used to explore the concept of partial twisting, whereas the CFD can examine effects of flow separation at the blade discontinuities caused by the partial twist. Further, two wind turbines are investigated: (1) the NREL Phase VI and a small lab wind turbine. The NREL VI turbine is examined to compare the model results to published data, whereas the lab model was pursued to test in the lab in future studies. The results found that it is possible to use partial blade twisting for power regulations.

Chapter One Introduction

CHAPTER 1

INTRODUCTION

The wind energy is considered one of the cleanest sources of energy. The continuous desire to harness more wind energy was the main reason to design different sizes of wind turbine rotors. The progress of wind turbine size can be seen in the following Figure 1-1.

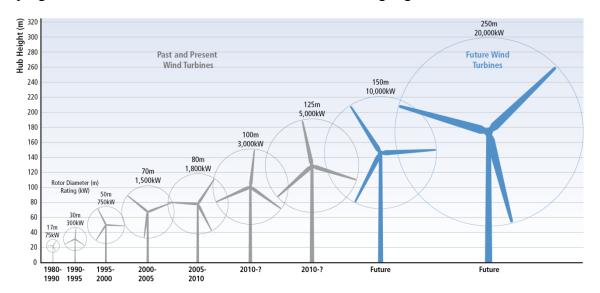


Figure 1-1: The Progress of Wind Turbine Size [1]

Controlling and regulating the power from the wind turbine is a very important process. There are two types of power regulation and control:

- Pitch control, the blades are rotated about their axis modifying the lift and drag characteristics, and hence the generated power.
- Stall control, the blades are designed to be stalled at certain operating wind speed, which prevent the power from increasing above certain limits. There are two methods of controlling the output power under stall control:
 - o Passive stall, a fixed blade pitch is chosen such that the turbine reaches its maximum or rated power at a desired wind speed.
 - Active stall, the power limitation achieved by changing the blade pitch angle to a larger angle.

The objective of the work in this thesis is to consider power regulation using pitching, however, the novel approach is to consider partial pitching of the blade. This is beneficial for larger blades since the pitch actuator systems can be simple and lighter.

Chapter One Introduction

1.1 Wind Turbine Torque

It is known that the torque is directly proportional to the radius along the blade span. The torque decrease at the blade tip as a result to the tip vortices as shown in Figure 1-2 [2].

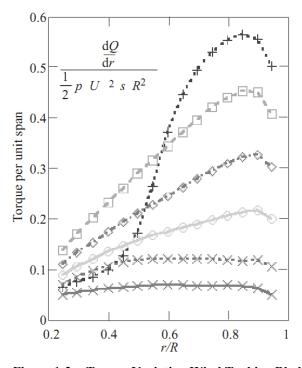


Figure 1-2: Torque Variation Wind Turbine Blade

The cumulative torque at different radial stations compared to the total torque is shown in Table 1-1 for the NREL Phase VI turbine. This is calculated using the BEM method which will be highlighted in chapter 2. The result shown here is to highlight the importance of the outboard sections in power generation. The cumulative torque is calculated in two regions (0-0.7) and (0.7-1) normalized with respect to the blade tip.

	Percentage of Partial Torque to Total Torque	
Wind Speed (m/s)	Outboard Section	Inboard Section
	1 - 0.7	0.7 - 0
4	47.79%	52.2%
7	56.44%	43.55%
10	64.13%	35.86%
12	60.07%	39.92%

Table 1-1: Percentage of Partial Torque to Total Torque for NREL Phase VI