Mesenteric blood flow in diabetics with and without autonomic neuropathy

THESIS

Submitted for partial fulfillment of MSc Degree in Internal Medicine

By

Mai Galal Abdel Monium Elshenofey (M.B.Bch)

Supervised by

Dr. Reda Mohamed Amer

Professor of internal medicine
Faculty of medicine
Cairo University

Dr. Sahar Abdel Rahman Nassef

Professor of internal medicine
Faculty of medicine
Cairo University

Dr. Mary Wadie Fawzy

Lecturer of internal medicine
Faculty of medicine
Cairo University

2014

Table of Contents

	Pages
Acknowledgement	
List of Tables	I
List of Figures	Ш
List of Abbreviations	1
Abstract	1
Introduction and Aim of work	2
Review of Literature	
Chapter 1 Diabetes Mellitus	4
Chapter 2 Diabetic Neuropathy	46
Chapter 3 Mesenteric Blood Flow and its assessment	71
Subjects and Methods	99
Results	109
Discussion	135
Conclusion	145
Recommendations	146
Summary	147
References	149
Arabic Summary	190

Acknowledgement

Above all and first of all; all thanks to **ALLAH**, the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed into this work under the supervision of **Dr.Reda Mohamed Amer**, Professor of Internal medicine, Faculty of Medicine, Cairo University. I am greatly indebted to his suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget his unlimited help, continuous support, kind encouragement, constructive criticism and wise guidance.

I would like also to express my sincere gratitude and appreciation to **Dr. Sahar Abdel Rahman Nassef,** Professor of Internal Medicine, Faculty of Medicine, Cairo University, for her helpful guidance, valuable advice, meticulous care, great effort and generous help and support. She offered me much of her time and advice to accomplish this work.

I'm particularly very grateful to **Dr.Mary Wadie Fawzy**, Lecturer of internal medicine, Faculty of Medicine, Cairo University, who offered much of her time and advice for suggesting, reading and supervising throughout this work. To her words of praise are not sufficient.

Mai Galal Elshenofey.

List of Tables

Table	Table Title	Page No.
No.	Eticlogic aloggification of dishetes mallitus according	110.
1	Etiologic classification of diabetes mellitus according to American Diabetes Association 2012	7
2	Prevalence of diabetes in Egypt in years 2010 and	13
	2030	
	The diagnostic criteria proposed by the American	
3	Diabetes Association for mild, moderate, and severe	34
	DKA and HHS	
4	Classification of neuropathies observed in diabetic	47
•	patients	•,
5	Signs and symptoms of various diabetic autonomic	57
	neuropathy	
6	Differential diagnosis of diabetic neuropathies	58
•		
7	Cardiovascular autonomic tests and suggested	61
,	indications for their use	01
	The effects of physiological, pharmacological and	
8	pathological agents on Superior Mesenteric Artery	98
	blood flow detected by Duplex Ultrasound in humans	70
	apparently free of SMA disease	
9	Comparison between the studied groups as regard	109
,	general data	107
10	Comparison between the studied groups as regard lab	110
10	data	110
11	Comparison between the studied groups as regard	111
	urine analysis and A/C Ratio	111
12	Comparison between the cases and controls as regard	112
	general data	112
13	Comparison between the studied groups as regard	114
13	celiac artery before and after meals	117
14	Comparison between the total cases versus controls as	116
	regard celiac artery before meals	110
15	Comparison between celiac artery before and after	117
	among group 1	11/
16	Comparison between celiac artery before and after	118
	among group 2	110

17	Comparison between celiac artery before and after	118
17	among controls	110
18	Comparison between the studied groups as regard %	119
	of change in different parameters of the Celiac Artery	119
19	Comparison between the studied groups as regard	120
	superior mesenteric artery before and after meals	120
20	Comparison between the total cases versus controls as	123
	regard the SMA before and after meals.	123
21	Comparison between superior mesenteric artery before	125
	versus after meal among group 1	123
22	Comparison between superior mesenteric artery	126
22	before versus after meal among group 2	120
22	Comparison between superior mesenteric artery	127
23	before versus after meal among controls	14/
24	Comparison between the studied groups as regard %	128
24	of change in different parameters of the SMA	128
25	Comparison between the studied groups as regard	130
	aortic artery before and after meals	130
26	Comparison between aortic artery before versus after	132
	meals among group 1	132
27	Comparison between aortic artery before versus after	132
	meals among group 2	132
28	Comparison between aortic artery before versus after	132
	meals among controls	132
29	Comparison between total cases versus controls as	133
	regard aortic artery before and after meals	133
30	Comparison between the studied groups as regard %	134
	of change in different parameters of the aorta	134

List of Figures

Figure No.	Figure Title	Page No.
1	Clinical Features of Diabetic Retinopathy	36
2	Arteries of the small intestine	71
3	Celiac Artery	73
4	Superior Mesenteric Artery	76
5	Inferior Mesenteric Artery	77
6	Angiogram of patient with chronic mesenteric ischemia	79
7	Siemens Acuson Antares Ultrasound Machine	90
8	Longitudinal image through the aorta (A) shows the origin of the celiac axis (fat arrow) and the superior mesenteric artery (skinny arrow).	92
9	Seagull Appearance, CA Doppler	93
10	The bifurcation of the celiac artery into the hepatic artery (HA) and splenic artery (SA) produces a vertical seagull like appearance with vascular signals	94
11	Doppler ultrasound of Superior mesenteric artery	95
12	Doppler ultrasound of the celiac artery	96
13	Doppler ultrasound of the celiac artery	97
14	Siemens Acuson Antares Ultrasound Machine used in our study	102
15	Superior mesenteric artery in the fasting state	104
16	Superior mesenteric artery in the postprandial state	105

17	Aorta in the fasting state	105
18	Aorta in the postprandial state	106
19	Celiac artery in the fasting state	106
20	Celiac artery in the postprandial state	107
21	Comparison between the studied groups (Group1, Group2 and controls) as regard celiac artery before and after meals	116
22	Comparison between the total cases versus controls as regard celiac artery before meals	117
23	Comparison between the studied groups (Group1, Group2 and controls) as regard superior mesenteric artery before and after meals	122
24	Comparison between the total cases versus controls as regard superior mesenteric artery before and after meals	124
25	Comparison between the studied groups (Group1, Group2 and controls) as regard aortic artery before and after meals	131
26	Comparison between total cases versus controls as regard aortic artery before and after meals	133

List of Abbreviations

- **2HPP:** 2 hours post prandial.
- A/C ratio: Albumin creatinine ratio.
- **ABCA1:** ATP-binding cassette, sub-family A, member 1
- ACE: Angiotensin converting enzyme
- ADA: American Diabetes Association
- AGEs: Advanced glycosylation end products
- **ALT:** Alanine aminotransferase
- **ANOVA:** Analysis of variance
- **APCs:** Antigen-presenting cells
- **AST:** Aspartate aminotransferase.
- **ATP:** Adenosine triphosphate
- **BMI:** Body mass index
- CA: Celiac artery
- **CGM:** Continuous glucose monitoring
- **CHD:**Coronary heart disease
- **CHF:** Congestive heart failure
- **CIDP:**Chronic Inflammatory Demyelinating Polyneuropathy
- **CIDP:**Chronic Inflammatory Demyelinating Polyneuropathy
- CNS: Central nervous system
- **CRP:** C-reactive protein
- **CSII:** Continuous subcutaneous insulin infusion

- **CT:** Celiac trunk
- CTLA-4:Cytotoxic T-lymphocyte-associated protein 4
- CVD: Cardiovascular disease
- **DAN:**Diabetic Autonomic Neuropathy
- DCCT:Diabetes Control and Complications Trial
- **DKA:**Diabetic ketoacidosis
- **DM:**Diabetes Mellitus
- **DN:** Diabetic Neuropathies
- **DPN:** Diabetic Peripheral Neuropathy
- **DPP-4 inhibitors:** Dipeptidyl peptidase-4 inhibitor
- **EDIC:** Epidemiology of Diabetes Interventions and Complications
- EDV: End Diastolic Velocity
- **EPO:** Erythropoietin
- ESRD:End-stage renal disease
- **FBS**: Fasting blood glucose.
- FDA: Food and Drug Administration
- **FFA:** Free fatty acid
- **GAD**: Glutamic acid decarboxylase
- **GFR:** Glomerular filtration rate
- **GLP-1:** Glucagon like peptide 1
- **GLUT-2:** glucose transporter 2
- **HbA**_{1C:}HemoglobinA_{1c}

• **HDL**_c: high density lipoprotein cholesterol

• **HF:** Heart failure

• HHS:Hyperosmolar hyperglycemic state

• HIV:human immunodeficiency virus

• HLA: Human leukocyte antigen

• **HNF**: Hepatic nuclear factor

• **IBM:** International Business Machines

• ICAs: Islet cell autoantibodies

• **IFG:** Impaired fasting glucose

• **IGT:** Impaired glucose tolerance

• **IL2:** Interleukin–2

• **IL-6:** Interleukin-6

• **IMA:**inferior mesenteric artery

• IR: Insulin resistance

• **JNK:**c-Jun N-terminal kinases

• LDDP:length dependent diabetic polyneuropathy

• LDL_c: low density lipoprotein cholesterol

• **MDI:** Multiple daily injections

• MHC: Major histocompatibility complex

• **MODY**: Maturity onset diabetes of the young.

• MRI:Magnetic resonance imaging

• NaCl: Sodium Chloride

- NADPH: Nicotinamide adenine dinucleotide phosphate-oxidase
- NGSP: National Glycohemoglobin Standardization Program
- **NKT:** natural killer T cell
- NMDA:N-methyl-D-aspartate
- **NPH:** Neutral protamine hagedorn
- **NPL:** Neutral protamine lispro
- OGTT: Oral glucose tolerance test
- **PAI-1:** plasminogen activator inhibitor 1
- **PDE5** inhibitor: Phosphodiesterase type 5 inhibitor
- **PDFV:** Peak Diastolic Forward Velocity
- **PGE1:** Prostaglandin E1
- **PI:** Pulsatility index
- **PSV:** Peak Systolic Velocity
- **PTP:** Protein tyrosine phosphatase
- **PTPN22:** Protein tyrosine phosphatase, non-receptor type 22
- **PVR:** Post void residual volume
- **QDIRT:** Quantitative Direct and Indirect Reflex Test
- **QSART:** Quantitative Sudomotor Axon Reflex Test
- **RCT:** Rational choice theory
- **RI:** Resistive Index
- **ROS:** Reactive oxygen species
- **SD:** Standard deviation

• **SMA:** Superior Mesenteric Artery

• **SNRIs:** Serotonin-norepinephrine reuptake inhibitors

• SPSS: Statistical program for social science

• **SSRIs:** Selective serotonin reuptake inhibitors

• TCA:Tricyclic Antidepressants

• TCR: T-cell receptors

• TG: Triglycerides.

• TLR4: Toll like receptors 4

• TNF-α: Tumor necrosis factor alpha

• **TST:** Thermoregulatory sweat testing

• **ZnT8:** Zinc transporter

Abstract

Background: The splanchnic circulation is essential for oxygenation of the small and large intestine, transport of absorbed nutrients, maintenance of systemic blood pressure and is regulated by neuronal, myogenic and humoral factors. Blood supply of the gastrointestinal tract is potentially affected in patients with diabetes mellitus, since diabetes may be associated with abnormalities in one or more of these regulatory factors. Recent advances in duplex ultrasound technology have permitted the noninvasive examination of the mesenteric circulation at rest and after a variety of physiologic and pharmacologic situations in healthy individuals. This method, because of its noninvasive nature, allows for studies in humans that could lead to better understanding of the physiology of the mesenteric circulation and could be the ideal tool for the diagnosis of chronic mesenteric ischemia

Aim of work: To compare the pattern of blood flow velocity in the superior mesenteric artery (SMA) and celiac artery in diabetic patients with and without autonomic neuropathy.

Subjects and methods: Cross sectional study included 15 diabetics with no clinically detected autonomic neuropathy and 15 diabetic patients with autonomic neuropathy was compared to 15 of healthy control. All patients were subjected to: Full history taking and thorough clinical examination stressing on the peripheral and autonomic neuropathy and BMI, Biochemical tests including; FBS, PPBS, HBA1c, Lipid profile, urine analysis and detection of microalbuminuria. Colored Doppler study was done for all patients and the control group in both the fasting state and 45 min after a standardized meal(1000 calories).

Results: Results of our study showed that Diabetic patients with autonomic neuropathy don't exhibit the same response to meal as that in diabetics without autonomic neuropathy.

Conclusion: Thus we concluded that diabetic autonomic neuropathy can influence the mesenteric circulation and results in gastrointestinal manifestations unrelated to occlusive vascular disease.

Keywords: Diabetes, mesenteric blood flow, autonomic neuropathy.

Introduction

The splanchnic circulation is essential for oxygenation of the small and large intestine, transport of absorbed nutrients, maintenance of systemic blood pressure and is regulated by neuronal, myogenic and humoral factors (*Texter*;1963)

Blood supply of the gastrointestinal tract is potentially affected in patients with diabetes mellitus, since diabetes may be associated with abnormalities in one or more of these regulatory factors (*Horowitz et al;2004*)

Recent advances in duplex ultrasound technology have permitted the noninvasive examination of the mesenteric circulation at rest and after a variety of physiologic and pharmacologic situations in healthy individuals (*Lilly et al;1989*)

This method, because of its noninvasive nature, allows for studies in humans that could lead to better understanding of the physiology of the mesenteric circulation and could be the ideal tool for the diagnosis of chronic mesenteric ischemia (*Nicholls et al;1986*)

However, although the normal flow characteristics of the normal individuals, in whom the superior mesenteric artery (SMA) is well visualized, has been well described, the range of normal flow velocities in a more varied population is still unknown (*Jager*; 1986).

In addition, to be able to define a typical ultrasonographic waveform of chronic intestinal ischemia, it would appear advantageous to describe as well the pattern of blood flow velocity encountered in patients with gastrointestinal manifestations unrelated to occlusive vascular diseases.