

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Ultrastructural and Immunohistological Characterization of Cultured Human Corneal Epithelium

Thesis

Submitted in Partial Fulfillment of M.D. Degree in Histology

Presented By

Hala M. Fouad El-Mazar

(M.B.B.Ch., M.Sc.)

Supervisors

Prof. Dr.

Bothina Labib Mahmoud

Professor and Head of Histology Dept.

Faculty of Medicine

Menofiya University

Dr. Samy El-Hussini Attia

Assistant Professor of Histology

Faculty of Medicine

Menofiya University

Prof. Dr.
Salwa Metwally Aly

Professor of Histology

Faculty of Medicine

Cairo University

Dr. Ahmed Abo-Zaid Aly

Lecturer of Histology
 Faculty of Medicine
 Menofiya University

Faculty of Medicine Menofiya University 1998

Bach

بسم الله الرحمن الرحيم

﴿وقل ربِ زدنی علماً

صدق الله العظيم سورة طه - الآية ١١٤

ACKNOWLEDGMENTS

First and foremost thanks are due to ALLAH.

It is a great honor for me to take this opportunity to express my deepest gratitude to **Prof. Dr. Bothina L. Mahmoud**, Professor and Head of Histology Department, Faculty of Medicine, Menofiya University, for selection of this subject, expert guidance, kind supervision, and valuable suggestions and advises offered to me throughout this work, and without her encouragement and support this work would not has come to light.

It is a pleasure to express my great appreciation to **Prof. Dr. Salwa M.** Aly, Professor of Histology, Faculty of Medicine, Cairo University, for her sincere devotion, kind supervision and helpful guidance during the conduction of this work.

I would like to thank **Dr. Samy H. Attia**, Ass. Prof. of Histology, Faculty of Medicine, Menofiya University, for his generous help and kind co-operation.

My sincere thanks to **Dr.** Ahmed A. Aly, Lecturer of Histology, Faculty of Medicine, Menofiya University, for his kind help and valuable advises.

My great thanks are due to **Prof. Dr. Harry Maisel**, Prof. of Anatomy and Cell Biology, Faculty of Medicine, Wayne State University, Michigan, USA, for his support and sincere guidance.

I am also obliged to all my colleagues in the Histology Department, Faculty of Medicine, Menofiya University for their support.

LIST OF ABBREVIATIONS

Ad12-Sv40 adenovirus 12 and simian virus-40

AE-5 antiepithelial-5

AIDS acquired immune deficiency syndrome

BPE bovine pituitary extract

c-AMP cyclic-adenosine monophosphate

c-DNA cyclic-deoxyribonucleic acid

DMSO dimethyl-sulfoxide

EDTA ethylene diamine tetra-acetic acid

EGF epidermal growth factors

ELISA enzyme linked immunosorbent assay

FBS fetal bovine serum

FNC fibronectin and collagen
GFAP glial fibrillar acidic protein

IF intermediate filament

IFM immunofluorescence microscopy

K keratin

KCl potassium chloride

KGF keratinocyte growth factor

KGF-R keratinocyte growth factor receptors

KGM keratinocyte growth medium m-RNA messenger-ribonucleic acid

NaCl sodium chloride

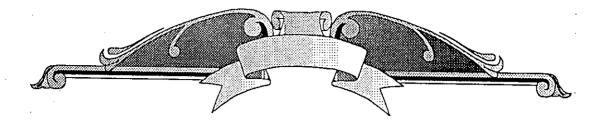
NFP neurofilament proteins
NGSL neutral glycosphingolipid
pAb-55 polyclonal antiboy-55

PBS phosphate-buffered saline PhCM phase-contrast microscopy

RNA ribonucleic acid

RT-PCR reverse transcription polymerase chain reaction

SDS sodium dodecyl sulfate


SDS-PAGE sodium dodecyl sulfate polyacrylamid gel electrophoresis

SIRC serial immortalized rabbit cells

T.E.M transmission electron microscopy

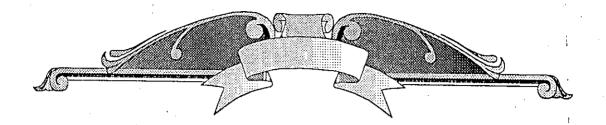
LIST OF TABLES

		Page
Table (1):	Classification and rules for expression of epithelial	
	keratins	40
Table (2):	The donor information	66
Table (3):	The effective growth area of common plastic ware	69
Table (4):	Volume of medium-cells relationship	69
Table (5):	Kertinocyte growth medium (KGM Bullet kit)	72
Table (6):	Epon-Araldite formulation	92
Table (7):	Improving low cell count	102
Table (8):	Improving low viability (live cells vs. dead cells)	;

Introduction

INTRODUCTION

The cornea is the circular clear tissue at the anterior part of the outer fibrous layer of the eyeball. It is both transparent and avascular. The cornea has two major functions; protection of the intraocular contents and refraction of light; to accomplish these two functions the cornea must maintain its strength and transparency.


Microscopically, the cornea is composed of five layers; from front to back they are: (1) the epithelium, (2) Bowman's membrane, (3) the substantia propria, (4) the Descemet's membrane and (5) the Descemet's endothelium (Cormack, 1993).

The human corneal epithelium is nonkeratinized stratified squamous epithelium that consists of five to seven layers of cells. It has several unique characteristics among other stratified squamous epithelia of the body. It is extraordinarily regular in thickness over the entire cornea and it has absolutely smooth, wet, apical surface that serves as the major refractive surface of the eye. Its location on the surface of transparent cornea requires that it be transparent also. In addition to that, the epithelium carries out "routine" housekeeping functions of an epithelium that borders the external environment. These include provision of a barrier to fluid loss and pathogen entrance and resistance to abrasive pressure (Smolin and Thoft, 1994).

Because the cornea is exposed the corneal epithelium is vulnerable to various kinds of trauma such as chemical, radiation and irritation. Injury of the corneal epithelium may result in loss of sight (Bruner, 1992).

Previous and current studies had employed experimental animals such as rabbits, rats and animal-derived tissue cultures as alternative models, to test the ocular irritancy. These techniques are simple to perform, allow a quick economical results and use of laboratory animals that are easy to breed and maintain. Yet there are morphological and histochemical differences between the rabbit eye and the human eye that have led the animal model to be challenged almost since its inception (Kahn et al., 1993).

Alternatives to animal models have been proposed. Human corneal organ culture techniques have been developed (Doughman, 1980 and Richar et al., 1991) whereas tissue culture of human corneal epithelium has been used to model the ocular surface in vitro (Hainsowrth, 1991). Such a model may be useful as an adjunct in studying the mechanisms underlying human ocular irritancy by producing cells, living in a controlled environment, free from the disturbing influences of other parts of the body and species-specific (Kahn et al., 1993).

Aim of the Work