

Endothelial Nitric Oxide Synthase G894T Gene Polymorphism and Ischemic Heart Disease among Smokers: A Pilot Study

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Hanaa Moustafa El-Saied Mohamed

M.B.B.Ch Faculty of Medicine - Ain Shams University

Supervised by

Prof. Afaf Abd El Alim Mostafa

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Rania Ahmed AboShady

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Dina Aly Mohamed Aly Ragab

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Afaf Abdelalim Mostafa for the continuous support of throughout my thesis, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor.

My sincere thanks To Asst. Prof. Rania Ahmed Aboshady, for the useful comments, remarks and engagement through the learning process of this master thesis. I'm very grateful for her continuous encouragement and guidance.

My greatest honor was working under supervision of my kindest heart Dr. Dina Aly Ragab. I am so grateful for your precious time and patience at all my hard times.

Lastly, I would like to thank Cardiology unit at Ain Shams University for permitting me to collect subjects and data from.

Contents

Subjects Pag	ge
List of abbreviations List of figures List of tables	V
• Introduction	1
Aim of the work	4
• Review of Literature	
♦ Ischemic Heart Disease	5
A. Epidemiology	5
B. Pathogenesis	6
C. Classification	13
D. Risk Factors	15
E. Diagnosis	19
F. Treatment	21
♦ Nitric Oxide Synthase Enzyme	22
A. Nitric oxide synthase gene	22
B. Nitric oxide synthase structure and function	22
C. Nitric oxide synthase isoforms	24
D. Nitric oxide synthase expression	26
E. Genetic Polymorphism of eNOS gene	27
F. Association of NOS3 Gene Polymorphisms and diseases	30

List of Contents

•	Subjects and Methods	33
•	Results	47
•	Discussion	56
•	Summary	64
•	Conclusion	68
•	Recommendations	69
•	References	70
•	Arabic Summary	

List of Abbreviations

AMI	Acute myocardial infarction.
ADMA	Asymmetric dimethylarginine.
BH ₄	Tetrahydrobiopterin.
Вр	Base pair.
CAD	Coronary artery disease.
CaM	Calmodulin.
CK	Creatine kinase.
CKD	Chronic kidney disease.
CK-MB	Creatine kinase MB fraction.
CNS	Central nervous system.
CRP	C-reactive protein.
CT	Computed tomography.
cTnI	Cardiac troponine I.
cTnT	Cardiac troponine T.
DN	Diabetic nephropathy.
DNA	Deoxyyribonucleicacid.
DDAH	Dimethyl arginine dimethyl amino
	hydrolase.
ЕСНО	Electrocardiography.
ECG	Electrocardiogram.
EDTA	Ethylenediaminetetraacetic acid.
EDRF	Endothelium-derived relaxing factor.
eNOS	Endothelial nitric oxide synthase.
FAD	Flavin adenine dinucleotide.
FMN	Flavin mononucleotide.
HLA	Human leukocyte antigen.
IHD	Ischemic heart disease.
IL	Interleukin.

iNOS	Inducible nitric oxide synthase.
IQR	Interquartile range.
LDL	Low density lipoprotein.
L-NMMA	N-monomethyl-L-arginine
MMPs	Metalloproteinases.
MI	Myocardial infarction.
mRNA	Messenger ribonucleic acid.
NADPH	Nicotinamide adenine dinucleotide phosphate.
NOS-1	Nitric oxide synthase 1.
NOS-2	Nitric oxide synthase 2.
NOS-3	Nitric oxide synthase 3.
nNOS	Neuronal nitric oxide synthase.
NO	Nitric oxide.
OX	Oxidative.
PCR	Polymerase chain reaction.
ROS	Reactive oxygen species.
SD	Standard deviation.
SMC	Smooth muscle cells.
SNP	Single nucleotide polymorphism.
SLE	Systemic Lupus Erythematosus.
TIMPs	Tissue inhibitors of Metalloproteinases.
TLR	Toll- like receptors.
TNF	Tumor necrosis factor.
T2DM	Type 2 diabetes mellitus.
UA	Unstable angina.
VCAM-1	Vascular-cell adhesion molecule-1.
VNTR	Variable number tandem repeat.
WHO	World Health Organization.

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Lipoprotein retention in arterial wall.	8
<u>2</u>	Role of macrophage in inflammation of the artery.	10
<u>3</u>	Effects of T-cell activation on plaque formation.	12
<u>4</u>	Classification of acute coronary syndrome.	14
<u>5</u>	Inflammatory actions of smoking.	18
<u>6</u>	Structure of NOS dimer.	23
<u>7</u>	Isoforms, functions and inhibitors of NOS.	25
<u>8</u>	Association between eNOS gene and the different diseases. The width of the arrow reflects the strength of the association.	28
9	Organization of eNOS and location of the examined polymorphisms.	29
<u>10</u>	An example of an amplification curve with baseline set correctly, beginning after the maximum deadline. Different curves refer to different samples.	43
<u>11</u>	Differently-colored molecular probes specific for the wild-type and mutant alleles are designed.	44
<u>12</u>	An example of the results chart from the software.	45
<u>13</u>	Gender percentage among cases and control.	49

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>14</u>	Percentage of subjects with family history of IHD, diabetes and hypertension in both cases and controls.	50
<u>15</u>	Genotype percentage among cases and controls.	51
<u>16</u>	Allele percentage among cases and controls.	52

List of Tables

No.	<u>Table</u>	Page
1	Traditional and Non Traditional Risk Factors of IHD.	15
<u>2</u>	The PCR reaction mix (Total volume of 25 µL).	42
<u>3</u>	Comparison between cases and controls regarding categorical variables.	48
<u>4</u>	Comparison between cases and controls regarding numerical variables.	49
<u>5</u>	Comparison between cases and controls regarding genotype of NOS3 gene and allele frequency.	51
<u>6</u>	Comparison between the different genotype groups in relation to the categorical variables among controls.	53
7	Comparison between the different genotype groups in relation to the categorical variables among cases.	53
<u>8</u>	Description of the different genotypes in relation to smoking status among cases and controls.	54
9	Comparison between cases and controls regarding the combined effect of presence of T allele and smoking on incidence of IHD.	55

Abstract

Background: IHD is one of the commonest causes of morbidity and mortality. Atherosclerosis is the basis of CAD; it results in asymmetrical thickening of the arterial wall. Nitric oxide plays an important role in prevention of atherosclerosis. Many studies were interested in studying the association between G894T gene polymorphism and IHD.

Objectives: To determine the association between G894T polymorphism and IHD among smokers. gene Methods: 80 subjects were included (40 IHD cases and 40 controls). Demographic and clinical data were collected for both groups (age, history of DM, history of HT, family history of IHD). Real time PCR reaction was used to determine gene polymorphism. Results: Both descriptive and analytical statistics were done. There was no statistically significant difference

Conclusion: eNOS G894T gene polymorphism doesn't increase risk of IHD among smokers according to our results.

between cases and controls regarding the genotype and

allelic frequency.

Key words: Ischemic heart disease, endothelial nitric oxide, gene polymorphism, smoking, G894T gene polymorphism.

Introduction

Ischemic heart disease, also known as coronary heart disease is a group of diseases that includes: stable angina, unstable angina, myocardial infarction, and sudden coronary death (Torpy et al., 2009). In 2013, ischemic heart disease was the most common cause of death globally, resulting in 8.14 million deaths (Mortality and Causes of Death Collaborators, 2015).

Ischemic heart diseases are the result of complex interactions between a great number of risk factors including high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, and excessive alcohol in addition to the presence of one of several recently identified genetic polymorphisms (**Drenos et al., 2015**).

Endothelial dysfunction is integrally involved in the pathogenesis of ischemic cardiovascular disease, and has been associated with an increased risk of myocardial infarction and stroke (Lee et al., 2006).

In the endothelial cell, nitric oxide (NO) is synthesized by the endothelial nitric oxide synthase (eNOS)

encoded by a 26 exon gene located on chromosome 7 (Dellamea et al., 2014). In addition to relaxing vascular smooth muscle cells, endothelium- derived NO inhibits platelet and leukocyte adhesion to vascular endothelium, inhibits vascular smooth muscle cell migration and growth and limits the oxidation of atherogenic low-density lipoprotein. These actions suggest that endothelial NO may have an important athero-protective role beyond its effect on vessel tone and blood pressure and that an alteration in the activity of the vascular NO system could contribute to the pathogenesis of atherosclerosis (Kawashima et al., 2004). Defects in endothelial cell function and NO production have been described for subjects with atherosclerosis, hypertension, diabetes, as well as obesity (Bressler et al., 2013).

Genetic polymorphisms are very common. Studies have shown that at least 30% of structural gene loci of enzymes and proteins are polymorphic, but this usually has no functional significance (Hopkinson and Whitehouse, **2000).** Approximately 90% of these genetic variations is in the form Single nucleotide polymorphism (SNPs). A SNP is a single base mutation in DNA sequence; they are the simplest type of polymorphism (Albert et al., 2011).

The replacement of guanine by thymine at NOS3 nucleotide 894 results in a change of amino acid from glutamate to aspartate at codon 298 of the mature NOS3 protein. Although this is a conservative amino acid substitution, two groups of investigators have shown that NOS3 with aspartate at position 298 is subject to selective proteolytic cleavage which is predicted to result in absence or reduction of NOS activity in homozygous carriers of the 894T allele (Persu et al., 2002).

Aim of the Work

The aim of the thesis was to study the G894T Nitric Oxide Synthase gene polymorphism as a risk factor of ischemic heart disease among Egyptian smokers.