Pulmonary Antioxidant concentration and Oxidative damage in ventilated preterm with Respiratory distress syndrome

Thesis

Submitted for the partial fulfillment of master Degree in Pediatrics

By

Ramy Gameel El - Nazer

M.B., B.ch

Ain Shams University (2001)

Supervised by

Dr. Safaa shafik Imam

Assistant professor of pediatrics Faculty of Medicine – Ain Shams University

Dr. Enas Mohammed Nassar

Assistant professor of pediatrics Pediatrics Research Unit, Health Radiation Research Department of National Center for Radiation

Dr. Ghada Ibrahim Gad

Lecturer of pediatrics Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2008

Acknowledgement

Firstly of all I wish to express my endless thanks to Allah for giving me the help to perform this work.

I would like to express my deeply felt gratitude to **prof. Dr. Safaa Shafik Imam,** Assistant professor of pediatrics, faculty of medicine, Ain Shams University for giving me the chance of working under her supervision. I appreciated her constant encoveragement.

Many thanks for **Prof. Enas Mohammed Nassar**Assistant professor of pediatrics, Pediatrics Research Unit,
Health Radiation Research department, national center for
radiation and technology. For her kind supervision, and
great help throughout the practical part of this work.

Great appreciation and gratitude to **Dr. Ghada Ibrahim Gad** Lecturer of pediatrics, Faculty of Medicine

Ain Shams University for her great efforts. Valuable guidance, and great concern that really supported the work.

My great thanks to all who have developed and encouraged me in the production of this work

Dedication

To

Family for their warn affection, patience, encouragement, and for always being there when I needed them.

List of Contents

Subjects	Page
• List of Abbreviations	I
• List of Tables	III
• List of Figures	VII
• Introduction	1
Aim of Work	3
Respiratory distress syndrome	4
Oxidative stress	52
Subjects of methods	89
• Results	98
• Discussion	143
Summary and Conclusion	158
• Recommendation	160
• References	161
Arabic Summary	•••••

MAP : Mean airway pressure

NCPAP : Nasal Continous positive airway pressure

NEC: Necrotizing enterocolitis

NICU: Neonatal intensive care unite

NIPPV: Nasal intermittent positive pressure ventilation

No : Nitric oxide

Ns : Neonatal sepsis

O₂ : Oxygen

OI : Oxygenation index

PaCo2 : Partial pressure of carbon dioxide

Pao₂: Partial pressure of oxygen

Pb : Barometric pressure

PPHN: Persistent pulmonary hypertension

PCA : Post conceptual age

PDA : Patent ducts arteriosus

PEEP : Positive end expiratory pressure

PIP : Peak inspiratory pressure

PMA : Postmenstrual age

PPV : Positive pressure ventilation

PSV : Pressure support ventilation

PTV: Patient triggered ventilation

PVL : Periventricular leukomalacia

RDS : Respiratory distress syndrome

ROM : Rupture of membranes

ROP : Retinopathy of prematurity

SGA : Small for gestational age

SIMV : Synchronized intermittent mandatory ventilation

SPS: Surfactant protein

VAP : Ventilator associated pneumonia

VI : Ventilator index

V/P

: Ventilation perfusion mismatch

mismatch

Wk : Week

SOD : Superoxide dismutase

OH : Hydroxyl radical

ROS : Reactive oxygen species

RNS : Reactive nitrogen species

O² : Superoxide

RO₂ : Peroxyle

 H_2O_2 : hydrogen peroxide

HRO² : Hydroperoxyl

RONOO : Alkyl Peroxynitrate

GPX : Glutathione peroxidse

XOR : Xanthine oxidoreductase

MAD : Malondialdehyde

GSH : Glutathione

CS: Cesarean section

List of Tables

Table No.	Title	Page
Table (1)	Definition of BPD and Diagnostic	12
	Criteria	
Table (2)	Surfactant preparations	29
Table (3)	Complications of mechanical	49
	ventilation	
Table (4)	show prognosis and outcomes in	51
	patients with hyaline membrane	
	disease based on birth weight	
Table (5)	Comparison between RDS patient and	98
	controls as regards some clinical	
	characteristics	
Table (6)	Comparison between patients and	102
	controls as regards mean PH and fio ₂	
	in the 1 ST and 4 th day of life	
Table (7)	Comparison of vitamin E in the 1 st	103
	and 4th day of life between patients	
	and controls	
Table (8)	Comparison of MAD in the 1 st and 4th	105
	day of life between patients and	
	controls	

Table (9)	Comparison between the 3 different	107
14610 (5)	radiological RDS groups as regards	107
	ventilatory and blood gases indices in	
	the 1 ST day of life	
Table (10)	Comparison between the 3 different	109
	radiological RDS groups as regards	
	ventilatory and blood gases indices in	
	the 4 th day of life	
Table (11)	Comparison between different grades	111
	of RDS as regards vitamin E level	
Table (12)	Comparison of MAD in the 1 ST and	113
	4 th day of life between the different	
	grades of RDS	
Table (13)	Comparison between the 3 different	115
1 abic (13)	_	113
	radiological RDS as regards the	
	complications	
Table (14)	Comparison between the 3 different	116
	radiological RDS groups as regards	
	duration of O ₂ therapy and duration of	
	ventilatory support	
Table (15)	Comparison between survivors	117
	patients and non survivors patients as	
	regards Vitamin E and MAD in the	
	1st and 4 th day of life	

Table (16)	Comparison between male and female	120
	as regard vitamin E and MAD	
Table (17)	Comparison mode of delivery as	123
	regard vitamin E and MAD	
Table (18)	Correlation between vitamin E, MAD	124
	versus GA among RDS cases	
Table (19)	Correlation between vitamin E, MAD	127
	and GA among PT control	
Table (20)	Correlation between vitamin E, MAD	128
	and fio ₂ in the 1 st and 4 th day of life	
	among RDS patient group	
Table (21)	Correlation between vitamin E, MAD	130
	and duration of mechanical ventilation	
	among cases	
Table (22)	Correlation between vitamin E, MAD	132
	and duration of O ₂ supply among	
	cases	
Table (23)	Correlation between vitamin E in the	133
	1st and 4 th day of life and RDS	
	severity indices in cases	
Table (24)	Correlation between vitamin E in the	136
	1st and 4 th day of life and RDS	
	severity indices in cases	

Table (25)	Correlation between vitamin E in the 1st and 4 th day of life and RDS severity indices in cases	139
Table (26)	Correlation between vitamin E in the 1st and 4 th day of life and RDS severity indices in cases.	140
Table (27)	Comparison between survivors patients and non survivors patients as regards changes of Vitamin E and MAD.	141
Table (28)	Comparison between different grades of RDS as regards changes of Vitamin E and MAD	142

List of figures

Fig. No.	Title	Page
Fig. (1)	Surfactant deficiency in a premature infant, Histologic features. Photomicrograph	5
Fig. (2)	Obeying Laplace's law smaller alveoli would tend to collapse at end expiration forcing air into the larger alveoli that overinflate	7
Fig. (3)	The contributing factors in the pathogenesis of hyaline membrane disease in premature birth	9
Fig. (4)	RDS grade 1: fine reticuloglanular mottling	16
Fig. (5)	RDS grade 2: mottling with air bronchograms	16
Fig. (6)	RDS Grade 3: Diffuse mottling, heart borders are just discriminable with prominent air bronchograms	17
Fig. (7)	RDS Grade 4: Bilatral confluent opacification of lungs	17
Fig. (8)	Free radicals and reactive oxygen species and their damaging effect	64
Fig. (9)	Summary of mechanism of free radical in pathological status	71

List of Figures

Fig. (10)	Comparison of vitamin E in the 1st day of	103
	life between patients and controls	
Fig. (11)	Comparison of vitamin E in the 4th day of	104
	life between patients and controls	
Fig. (12)	Comparison of MAD in the 1st day of life	105
	between patients and controls	
Fig. (13)	Comparison of MAD in the 1st day of life	106
	between patients and controls	
Fig. (14)	Comparison between different grades of	111
	RDS as regards vitamin E level	
Fig. (15)	Comparison between different grades of	112
	RDS as regards vitamin E level	
Fig. (16)	Comparison of MAD in the 1ST and 4th	113
	day of life between the different grades of	
	RDS	
Fig. (17)	Comparison of MAD in the 1ST and 4th	114
	day of life between the different grades of	
	RDS	
Fig. (18)	Comparison between survivors patients and	118
	non survivors patients as regards Vitamin E	
	1st day of life	
Fig. (19)	Comparison between survivors patients and	118
	non survivors patients as regards Vitamin E	
	4th day of life	

\$ List of Figures

		<u> </u>
Fig. (20)	Comparison between survivors patients and	119
	non survivors patients as regards MAD in	
	1st day of life	
Fig. (21)	Comparison between survivors patients and	119
	non survivors patients as regards MAD in	
	4th day of life	
Fig. (22)	Comparison between male and female as	120
	regard vitamin E in 1st day of life.	
Fig. (23)	Comparison between male and female as	121
	regard vitamin E in 4th day of life	
Fig. (24)	Comparison between male and female as	121
	regard MAD in 1st day of life	
Fig. (25)	Comparison between male and female as	122
	regard MAD in 4th day of life	
Fig. (26)	Correlation between Vitamin E and GA	124
	among RDS patients in day 1	
Fig. (27)	Correlation between Vitamin E and GA	125
	among RDS patients in day 4	
Fig. (28)	Correlation between MAD and GA among	125
	RDS patients in day 1	
Fig. (29)	Correlation between MAD and GA among	125
	RDS patients in day 4	

List of Figures

1		
Fig. (30)	Correlation between Vitamin E and FIO2	129
	among RDS patients in day 1	
Fig. (31)	Correlation between MAD and FIO2 among	129
	RDS patients in day 1	
Fig. (32)	Correlation between Vitamin E and duration	130
	of M.V (hours) among RDS patients in day1	
Fig. (33)	Correlation between MAD and duration of	131
	M.V (hours) among RDS patients in day 1	
Fig. (34)	Correlation between Vitamin E and a/A tension ratio among RDS patients in day 1	133
Fig. (35)	Correlation between Vitamin E and a/A tension ratio among RDS patients in day 4	134
Fig. (36)	Correlation between MAD and a/A tension	134
	ratio among RDS patients in day 1	
Fig. (37)	Correlation between MAD and a/A tension	134
	ratio among RDS patients in day 4	
Fig. (38)	Correlation between Vitamin E and Mean-	136
	(A/a) D-o2 among RDS patients in day 1	
Fig. (39)	Correlation between Vitamin E and Mean –	137
	(A/a) D-o2 among RDS patients in day 4	
Fig. (40)	Correlation between MAD and Mean –(A/a)	137
	D-o2 among RDS patients in day 1	
Fig. (41)	Correlation between MAD and Mean –(A/a)	137
	D-o2 among RDS patients in day 4	