

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

MENOUFIA UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT

SOIL SUCTION AND ANALYSIS OF RAFT FOUNDATION RESTING ON EXPANSIVE SOILS

By

Eng. Basuony Metwaly Abdel-Aziz El-Garhy B.Sc. in Civil Engineering, 1989 M.Sc. in Geotechnical Engineering, 1993

A Thesis Submitted to Menousia University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING STRUCTURAL ENGINEERING IN THE FIELD OF SOIL MECHANICS AND FOUNDATIONS

Supervised by

Dr. Abdel-Fattah Abdel-Qader Youssef

Prof. of Soil Mechanics and Foundations,
Vice Dean, Faculty of Engineering,
Menoufia University, Egypt.

Dr. Warren Kent Wray

Prof. of Soil Mechanics and Foundations

Dean, College of Engineering & Technology

Ohio University, Ohio, U. S. A.

Dr. Amr Mohamed Radwan

Prof. of Soil Mechanics and Foundations,

Faculty of Engineering at Matareia,

Helwan University, Egypt.

Dr. Maher Taha El-Nemr

Assistant Professor of Soil Mechanics and

M. El-Nemn

Foundations, Civil Engineering Department,

Menoufia University, Egypt.

(1999) · Land m. of

1111

MENOUFIA UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT

SOIL SUCTION AND ANALYSIS OF RAFT FOUNDATION RESTING ON EXPANSIVE SOILS

By

Eng. Basuony Metwaly Abdel-Aziz El-Garhy B.Sc. in Civil Engineering, 1989 M.Sc. in Geotechnical Engineering, 1993

A Thesis Submitted to Menoufia University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING STRUCTURAL ENGINEERING IN THE FIELD OF SOIL MECHANICS AND FOUNDATIONS

Examiners

Dr. Mona Mostafa Eied

Prof. of Soil Mechanics and Foundations,

Faculty of Engineering,

Ain Shams University.

Dr. Abdel-Salam Mohamed Salem

Prof. of Soil Mechanics and Foundations,

Faculty of Engineering,

Cairo University.

Dr. Amr Mohamed Radwan

Prof. of Soil Mechanics and Foundations,

Faculty of Engineering at Matareia,

Helwan University.

Dr. Abdel-Fattah Abdel-Qader Youssef

Prof. of Soil Mechanics and Foundations,

Faculty of Engineering,

Menoufia University.

(1999)

STATEMENT

This Thesis is submitted to the department of Civil Engineering, Faculty of Engineering, Menoufia University for the award of Ph.D.

Thesis Title:

Soil Suction and Analysis of Raft Foundation Resting on Expansive Soils

The work included in this thesis has been carried out by the author in the department of Civil Engineering, Faculty of Engineering, Menoufia University in cooperation with the department of Civil Engineering, Ohio University, U.S.A.

No part of this thesis has been submitted to any other university or institute for the award of a degree or qualification

Author's Name: Basuony Metwaly Abed El-Aziz El-Garhy

Signature : Bas wony El-Garhy

Date : 26/1/1999

The above statement has been signed by the thesis author.

Supervisor

Head of the department

ABSTRACT

This study introduces a practical and simple solution for two major problems: (1) predicting moisture movement and estimating the associated volume changes in expansive soils, and (2) analysis of the interaction between a raft foundation and the movements in the supporting expansive soils. The solution of these problems are accomplished through the development of two computer models.

A three-dimensional moisture diffusion and volume change model named SUCH has been developed. The model SUCH is able to predict the distribution of soil suction and the resulting volume changes in expansive soils with respect to time under a covered area (i.e., raft foundation or pavements) when the supporting soil mass is subjected to different edge conditions that commonly cause moisture changes (i.e., climate, trees, or ponded water). The model SUCH has been validated against field data at four test sites in different countries (i.e., United States, Saudi Arabia, and Australia) with widely varying climatic and soil conditions. In each of these widely divergent sites, the moisture diffusion and volume change model SUCH was shown to be valid. Using the new model SUCH, a method for calculating the edge moisture variation distance is developed. The results of the model analysis showed that different moisture barrier systems and the sand cushion technique can be used to minimize the moisture and volume changes in the supporting expansive soils. The model can also show the effect of either trees or ponded water located adjacent to the foundation, either of which can cause excessive moisture and volume changes in the supporting expansive soils.

A soil-structure interaction model called SLAB97 based on the finite element method has been developed for calculating the structural design parameters (i.e., moments, shears, and deflections) in the raft foundation resting on expansive soils. The new model SLAB97 requires only a statement of the initial soil suction conditions in the soil mass and the changes in the boundary conditions to predict the response of the raft foundations to these changes in the boundary conditions. The model SLAB97 overcomes

i

the major shortcoming present in all existing design procedures, namely the estimation of the distorted mound shape. The model SLAB97 is capable of estimating the distorted mound shape by considering the changes of soil suction distribution throughout the supporting expansive soil mass and the resulting volume changes (shrink/heave) with respect to time under a set of different edge conditions that commonly cause moisture changes (e.g., climate, trees, and ponded water). Most importantly, the user of the SLAB97 does not need to prescribe the edge moisture variation distance and the maximum differential movements as input values, as well as the locations of points not in contact and the amount of the initial gap between the raft foundation and the subgrade at these points. However, it does require an estimation of the worst expected boundary conditions which may cause the worst soil suction distribution through the soil mass under the raft foundations during the lifetime of the structure. The new design methods introduced in this study appears to be an improvement on all other design methods presently available for design of raft foundation resting on expansive soils.

The new model SLAB97 provides guidance for minimizing the structural design parameters (moments, shears, and deflections) in the raft foundation resting on expansive soils by using different moisture barrier systems. The results of the model analysis showed that either trees or ponded water located adjacent to the raft foundation can cause an increase in the structural design parameters. Also, the superstructure load pattern is considered an important parameter governing the values and the distribution of the structural design parameters in the raft foundation resting on expansive soils.

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. Warren K. Wray and Dr. Abdel-Fattah A. Youssef, whom served as the major advisors of my supervision committee, for their continuous guidance, encouragement, and patience during the research and preparation of this dissertation. I would also like to thank Dr. Amr M. Radwan and Dr. Maher T. El-Nemr, the other two members of my supervision committee, for their insightful suggestions.

I also, wish to acknowledge my wife for her support and patience. Finally, thanks must be extended to my father and all members of my family for their support.

The research on which this dissertation is based was originally funded by Egyptian Ministry of Higher Education-Scientific Channel System. During the final two years of the study period I was a visiting scholar in Ohio University, Russ College of Engineering and Technology, USA Without this support the research could have never realized the goals that have been reached.

TABLE OF CONTENTS

ABSTRACTACKNOWLEDGMENTSTABLE OF CONTENTSLIST OF TABLESLIST OF FIGURES	iii iv ix					
IST OF FIGURESxii INTRODUCTION1						
1.1. Expansive Soil Problems	1					
1.2. Objective and Scope of the Research	7					
II. MOISTURE MOVEMENT AND VOLUME CHANGE PRED	ICTION11					
2.1. Theory of Soil Suction	11					
2.1.1. Definitions of Soil Suction						
2.2. Moisture Movement Through Unsaturated Soils	14					
2.3. Factors Affecting Volume Change in Expansive Soils	30					
2.3.1. Amount and Type of Clay Minerals						
2.4. Methods of Volume Change Prediction						
2.4.1. Lytton Model	51 56 57					
2.4.1.5. Crack Fabric Factor (f)						

		2.4.2. Wray Model	58
		2.4.3. McKeen and Hamberg Model	59
		2.4.4. Mitchell and Avalle Model	
		2:4.4.1. The Instability Index (I_{pt})	63
		2.4.5. Snethen Model	63
		2.4.5.1. The Snethen Compressibility Factor (α)	
		2.4.5.2. The Suction Index (C_r)	
	2.5.	Moisture Control by Moisture Barriers	66
		2.5.1. Horizontal Barrier	
		2.5.2. Vertical Barrier	
		2.5.3. Vertical and Horizontal Barriers	69
III.		ALUATION OF AVAILABLE DESIGN METHODS OR FT FOUNDATION RESTING ON EXPANSIVE SOILS	73
	. 2 1	BRAB Method	73
	3.1.	BRAB Method	
	3.2.	Lytton Method	80
	3.3.	Walsh Method	84
	3.4.	Fraser and Wardle Method	92
	3.5.	Swinburne Method	94
	3.6.	Post-Tensioning Institute (PTI) Method.	99
	3.7.	Limitations in the Existing Design Methods	115
IV.	MC	DELING THE PROBLEMS	118
	4.1.	Introduction	118
	4.2.	Moisture Flow Model	119
	4.3.	Volume Change Model	119
	4.4.	Numerical Method of Analysis	122
	4.5.	Boundary Conditions	124
		4.5.1. No Flow	124
		4.5.2. Symmetry	

		4.5.3.	Surface Cover (i.e., Raft Foundations)	127
		4.5.4.	Groundwater Table	128
			Ponding	
			Evaporation and Infiltration	
		4.5.7.	Suction at Vertical Boundries.	131
			Internal Conditions	
	4.6.	Initial	Moisture Suction Conditions	131
	4.7.	Param	neters of the Moisture Diffusion and Volume Change Mode I SUCH	132
		471	Diffusion Coefficient	133
			Depth of Active Zone	
			Equilibrium Soil Suction	
			Suction Compression Index	
	4.0		•	
	4.8.	Comp	uter Program SUCH	151
	4.9.	Soil S	tructure-Interaction Model	154
		4.9.1.	Structural Parameters	156
			4.9.1.1. Depth of Uniform Thickness Raft Foundation	156
			4.9.1.2. Stiffening Beam Depth	158
			4.9.1.3. Stiffening Beam Spacing	158
			4.9.1.4. Stiffening Beam Width	158
			4.9.1.5. Structural Loads	160
		4.9.1.	Material Parameters	160
			4.9.2.1. Modulus of Elasticity of Soil	
			4.9.2.2. Poisson's Ratio of Soil	
			4.9.2.3. Modulus of Elasticity of Concrete	
			4.9.2.4. Poisson's Ratio of Concrete	
	4.10	Сотр	uter Program SLAB97	165
V.			TION OF MOISTURE DIFFUSION AND	
	VO:	LUME	CHANGE MODEL SUCH	166
	5.1.	Introdu	action	166
	5.2.	Valida	tion at Amarillo Test Site, Texas, USA	166
		5.2.1.	Analysis of Soil Suction at Amarillo Site	172
		5.2.2.	Analysis of Vertical Volume Change at Amarillo Site	191
	5.3.	Validat	tion at College Station Test Site, Texas, U.S.A	196

		5.3.1. Analysis of Soil Suction at College Station Site	
		5.3.2. Analysis of Vertical Volume Change at College Station Site	220
	5.4.	Validation at Al-Ghatt Test Site, Saudi Arabia	227
		5.4.1. Analysis of Soil Suction at Al-Ghatt Site	
		5.4.2. Analysis of Vertical Volume Change at Al-Ghatt Site	252
	5.5.	Validation at Adelaide Test Site, Adelaide, South Australia	260
	5.6.	Determination of Relationship Between Edge Moisture Variation	
		Distance and the Amplitude of Surface Suction Change	267
	5.7.	Effect of Sand Cushion Thickness on the Vertical Volume	
		Change in Expansive Soil Beneath a Raft Foundation	275
	5.8.	Effect of Moisture Barriers on the Vertical Volume	
		Change in Expansive Soil Beneath a Raft Foundation	277
	5.9.	Effect of Adjacent Tree Roots on the Vertical Volume	
		Change in Expansive Soil Beneath a Raft Foundation	283
	5.10	. Effect of Adjacent Ponded Water on the Vertical Volume	
		Change in Expansive Soil Beneath a Raft Foundation	286
VĮ.		ALYSIS OF THE RESULTS OF SOIL-STRUCTURE	
	INT	FERACTION MODEL SLAB97	293
	6.1.	Introduction	293
	6.2.	Determination of The Model Parameters for Expansive Soil in Egypt	293
	63	Effect of Different Edge Conditions on the Structural	
	0.5.	Design Parameters in the Raft Foundations	300
			202
		6.3.1. Analysis of Bending Moment	
		6.3.3. Analysis of Differential Deflection.	
	6.1	Effect of Load Bottom and Building Town on the Standard	
	υ. 4 .	Effect of Load Pattern and Building Type on the Structural Design Parameters in the Raft Foundations	314
		6.4.1. Analysis of Case 1 Results	
		6.4.2. Analysis of Case 2 Results	321