GENETIC IMPROVEMENT OF BACTERIAL XYLANASE PRODUCTION

By

MAHA TAIMOUR HASSAN EMAM

B.Sc. Agric. Sc. (Biotechnology), Cairo University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shamus University, 2010

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

GENETIC IMPROVEMENT OF BACTERIAL XYLANSE PRODUCTION

By

MAHA TAIMOUR HASSAN EMAM

B.Sc. Agric. Sc. (Biotechnology), Cairo University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shamus University, 2010

This thesis for Ph.D. degree has been approved by:

Date of Examination: / / 2017

Dr. Mohamed Serag El-Din Abd El-Sabour Prof. Emeritus of Genetics, Faculty of Agriculture, Benha University. Dr. Ashraf Bakry Abd El-Razik Prof. of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Fatma Mohammad Ibrahim Badawy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Samir Abd El-Aziz Ibrahim Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.

GENETIC IMPROVEMENT OF BACTERIAL XYLANSE PRODUCTION

By

MAHA TAIMOUR HASSAN EMAM

B.Sc. Agric. Sc. (Biotechnology), Cairo University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shamus University, 2010

Under the supervision of:

Dr. Samir Abd El-Aziz Ibrahim

Prof. Emeritus of Genetics, Dept. of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Fatma Mohammad Ibrahim Badawy

Prof. Emeritus of Genetics, Dept. of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Karima Abd El-Hafez Mohamed

Researcher Prof. Emeritus of Genetics, Dept. of Genetics and Cytology, National Research Center.

ABSTRACT

Maha Taimour Hassan Emam: Genetic Improvement of Bacterial Xylanase production. Unpublished PhD Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2017.

Evaluation of the collected bacterial strains revealed that, the maximum xylanase activity of Bacillus pumilus GH and Geobacillus. sterothermophilus 2027 was 80 and 40 U/ml, respectively at 60°C and pH7 with negligible amounts of cellulase activity. Xylanase activity from both strains showed tolerance to high temperature and alkaline conditions. Both strains were subjected to UV and EMS mutagenesis. The results proved that EMS is more effective as a mutagenic agent than UV irradiation for induction of high xylanase production. The best mutants of B. pumilus GH and G. sterothermophilus 2027 were selected for construction of intraspecific and intergeneric protoplast fusion. The highest xylanase activity (294.3 U/ml) was obtained from intraspecific protoplast fusion between B. pumilus mutants which increased by about two folds and 3.67 folds in comparison to parental strains and B. pumilus GH wild type, respectively. The thermostable endo-1,4-beta-xylanase gene of B. pumilus GH strain was isolated from chromosomal DNA using specific primers, then cloned into pET29a (+) vector and transformed into E. coli DH5a. The positive clone was selected, sequenced and submitted to gene bank with the accession number KT757524.1. The open reading frame of the xylanase gene was 687 bp encoding a protein of 228 amino acids with a molecular mass of 23 kDa. The recombinant plasmid containing xylanase gene was transformed to expression host E.coli BL21 (DE3) and the xylanase gene was successfully expressed but xylanase activity is lower than B. pumilus GH wild type strain.

Key Words: *Bacillus*, *E. coli*; xylanase; UV mutation; EMS; protoplast fusion; sequence analysis; gene cloning and expression.

ACKNOWLEDGMENT

First and foremost praises and thanks to **Allah**, the Lord, the most Gracious, and the most Merciful. **Allah** given me the power to believe in my passion and pursue my dreams. I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Samir Abd El-Aziz Ibrahim** for his guidance, encouragement, valuable discussions, suggestion and creative ideas which helped me during the progress of this work.

I would like to express my special gratitude and thanks to **Prof. Dr. Karima Abd El-Hafez Mohamed** for her kindness, patience, valuable advices and motivation during the laboratory work and for her great effort during writing the thesis. She always was being like my mother.

I would like to thank **Prof. Dr. Fatma Mohammad Ibrahim Badawy** for her kindness, guidance and facilities offered during this work.

I would like express my great thanks and gratitude to all the **staff members** of the Department of Genetics, Faculty of Agriculture, Ain Shams University for their help.

Gratefulness and thanks to my colleagues at **Applied Microbial genetics lab**, for their cooperation and assistance during this work and many thanks to all my friends at National Research Center for their help and moral support

Finally I would like to thank **my family** specially **my mother** for their tremendous support, encouragement and constant love in all my life.

DEDICATION

I dedicate this work to all my family members; **My Father**, **My Mother**, My brother (**Tamer**), My dear sister (**Sara**) and My lovely nephews (**Sondos and Hamza**)

Maha Taimour

CONTENTS

LICE OF ADDRESSA PLON	Page
LIST OF ABBREVIATION	I
LIST OF TABLES	III
LIST OF FIGUERS	V
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Xylan structure	3
2. Xylanolytic enzymes	4
3. Xylanase classification	5
4. Xylanase producing microorganisms	6
5. Advantages of bacterial xylanases	7
6. Xylanolytic enzymes genes	7
7. Xylanase gene regulation	8
8. Xylanase applications	9
8.1. Food industry	9
8.1.1. Baking industry	10
8.1.2. Xylooligosaccharides	10
8.2. Animal feeding	10
8.3. Pharmaceuticals8.4. Textile industry	11 11
	11
8.5. Paper industry8.6. Fuel production	13
±	13
9. Genetic improvement of xylanase production	13
9.1. UV-mutagenesis 9.2. EMS mutagenesis	14
9.3. Protoplast fusion	15
9.4. Cloning and expression of xylanase gene	16
MATERIALS AND METHODS	10 19
1. Materials	19
1.1. Bacterial strains	19
1.2. Plasmid vector	19
1.3. Primers	20
1.4. Media	20
1.4.1. Nutrient Agar (NA) medium	20
1.4.1. Nutrient Agai (NA) medium 1.4.2. Luria-Bertani (LB) medium	20
1.4.2. Zuria-Bertain (LB) medium 1.4.3. Xylan Liquid medium (XLM)	20
1.4.3. Ayian Elquid medium (AEM) 1.4.4. Minimal medium (MM)	21
1.5. Buffers	21
1.3. Duiivio	<i>∠</i> 1

1.5. 1. Protoplast buffers	21
1.5.1.1. Osmotic stabilizer buffer (30 mM Tris-Hcl)	21
1.5.1.2. Poly ethylene glycol (PEG) buffer	21
1.5.2. DNA buffers	22
15.2.1. Tris-HCl (50mM, pH 8.0)	22
1.5.2.2. EDITA (0.5 M, pH 8.0)	22
1.5.2.3. RNase A solution	22
1.5.2.4. Potassium acetate solution	22
1.5.2.5. TE buffer (1X) pH 7.6	22
1.5.2.6. Tris-sucrose/lysozyme mixture	23
1.5.2.7. DNA loading dye	23
1.5.2.8. TBE buffer (10X)	23
1.5.3. SDS-PAGE (Poly acrylamide gel electrophoresis) buffers	23
1.5.3.1. 30% Acrylamide	23
1.5.3.2. Tris (pH 8.8)	23
1.5.3.3. Tris (pH 6.8)	23
1.5.3.4. 10% SDS	24
1.5.3.5. Ammonium per sulphate (APS)	24
1.5.3.6. Resolving gel (15%)	24
1.5.3.7. Stacking gel	24
1.5.3.8. Protein extraction buffers	24
1.5.3.8.1. TNT buffer 1	24
1.5.3.8.2. TNT buffer 2	24
1.5.3.9. Loading buffer (Laemmeli buffer)	25
1.5.3.10. Running buffer	25
1.5.3.11. Staining solution	25
1.5.3.12. Distaining solution	25
1.6. Reagents	25
1.6.1. Dinitrosalicylic acid (DNS)	25
1.6.2. Protein assay reagents	26
1.6.2.1. Reagent stock	26
1.6.2.2. Assay reagent	26
2. Methods	26
2.1. Enzyme plate assay	26
2.2. Enzyme production	26
2.3. Enzyme activity assay	27
2.3.1. Xylanase assay	27
2.3.2. Cellulase assay	27
2.4. Standard curve	28
2.4.1. Xylose standard curve	28
2.4.2. Glucose standard curve	28
2.5. Effect of temperature and pH on xylanase activity	28

2.6. Induction of mutations	28
2.6.1. Induction of UV mutations	28
2.6.2. Induction of EMS mutations	29
2.7. Auxotrophic mutants isolation	29
2.8. Preparation of protoplast	29
2.8.1. Protoplas formation	29
2.8.2. Protoplast fusion	30
2.8.3. Protoplast regeneration	30
2.9. DNA extraction	30
2.10. Agarose gel electrophoreses	31
2.11. Xylanase gene isolation	31
2.12. PCR reaction	32
2.13. Plasmid isolation	32
2.14. Construction of recombinant plasmid	32
2.15. Competent cells preparation	32
2.16. Transformation	33
2.17. Selection of positive transformed colonies	33
2.18. DNA sequencing	33
2.19. Expression of xylanase gene in <i>E.coli</i> BL21 (DE3)	22
and cell lysis	33
2.20. Protein assay	34
2.20.1. Protein concentration Determination	34
2.20.2. Protein Standard	34
2.21. SDS-PAGE	34
2.21.1. Gel preparation	34
2.21.2. Sample preparation	35
2.21.3. Gel running	35
2.21.4. Gel staining	35
RESULTS AND DISCUSSION	36
1. Evaluation of the collected strains for xylanase production	36
1.1. Xylanase activity	36
1.2. Cellulase assay	38
1.3. Effect of temperature on xylanase activity	40
1.4. Effect of alkalinity on xylanase activity	42
2. Induction of mutation	43
2.1. UV mutagenesis	43
2.1.1. Effect of UV induced mutation on the production of	45
xylanase	43
2.1.1.1. Bacillus pumilus GH	45
2.1.1.2. Geobacillus sterothermophilus 2027	48
2.2. Ethyl methane sulfonate (EMS) mutagenesis	50

2.2.1. Effect of EMS induced mutation on the production of xylanase	52
2.2.1.1. Bacillus pumilus GH	52
2.2.1.2. Geobacillus sterothermophilus 2027	54
3. Improvement of xylanase production by protoplast fusion	57
3.1. Auxotrophic mutants isolation	57
3.2. Protoplast formation	59
3.3. Protoplast fusion	59
3.3.1. Cross 1: Intraspecific protoplast fusion between <i>Bacillus</i>	-
pumilus M34/BE (Arg-) and Bacillus pumilus M 34/BE	60
(His-)	
3.3.2. Cross 2: Intraspecific protoplast fusion between G.	
sterothermophilus M29/GE (ser-) and G.	61
sterothermophilus M29/GE (val-)	
3.3. Cross 3: Intergeneric protoplast fusion between Bacillus	
pumilus M34/BE (Arg-) and G. sterothermophilus	63
M29/GE (Val-)	
4. Cloning of xylanase gene from Bacillus pumilus GH in	~ 5
Escherichia coli	65
4.1. Xylanase gene isolation and transformation	65
4.2. Screening for <i>E. coli</i> DH5α positive colonies transformed	67
with the plasmid containing xylanase gene	07
4.3. Plasmid isolation	68
4.4. Sequencing and alignment of xylanase gene	69
4.5. Cloning and expression of xylanase gene in <i>E.coli</i> Bl21(DE3)	73
4.6. Screening for <i>E. coli</i> BL21 (DE3) positive colonies	73
transformed with the plasmid containing xylanase gene	
4.7. Analysis of xylanase gene expression by SDS-PAGE	75
4.8. Xylanase activity of transformed <i>E.coli</i> BL21 (DE3)	76
SUMMERY	78
CONCLUSION	83
REFERENCES	84

LIST OF ABBREVIATION

ABBREVIATION MEAN

Arg Arginine

bp Base pair

BSA Bovine serum albumin

CMC Carboxy methyl cellulose

DNA Deoxy ribonucleic acid

DNS Dinitrosalicylic acid

EDTA Ethylenediaminetetraacetic acid

EMS Ethyl methane sulfonate

GH Glycoside hydrolase

His Histidine

IPTG Isopropyl β-D-1-

thiogalactopyranoside

kDa kilo dalton

LB Luria-Bertani

M Marker

MeGA 4-O-Methyl-a-D-glucuronic acid

MM Minimal medium

MW Molecular weight

NA Nutrient agar

O.D Optical density

ORF Open reading frame

PAGE Poly acrylamide gel electrophoresis

PCR Polymerase chain reaction

PEG Poly ethylene glycol

rpm Rotation per minutes

rRNA Ribosomal ribonucleic acid

SDS Sodium dodecyl sulphate

UV Ultraviolet

Val Valine

XLM Xylan liquid medium

XOs Xylooligosaccharides

LIST OF TABLES

No		Page
1	Bacterial strains and their sources used for xylanase production and transformation	19
2	Primer sequences for xylanase gene isolation and sequencing	20
3	Xylanase activity (U/ml) of collected bacterial strains by DNS method	38
4	Cellulolytic activity (U/ml) of collected bacterial strains by DNS method	40
5	Effect of temperature on xylanase activity (U/ml) for <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	41
6	Effect of pH on xylanase activity (U/ml) for <i>Bacillus</i> pumilus GH and <i>Geobacillus sterothermophilus</i> 2027	42
7	Effect of UV irradiation on cell count and survival rate of <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	44
8	Xylanase activity (U/ml) of UV induced mutants from <i>Bacillus pumilus</i> GH after different exposure times	46
9	Xylanase activity (U/ml) of induced UV mutants from <i>Geobacillus sterothermophilus</i> 2027 after different exposure times	49
10	Effect of EMS (40 µl/ ml) on cell count and survival rate of <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	51

11	Xylanase activity (U/ml) of induced EMS (40 μl/ ml) mutants from <i>Bacillus pumilus</i> after different exposure times	53
12	Xylanase activity (U/ml) of induced EMS (40 μl/ ml) mutants from <i>Geobacillus sterothermophilus</i> after different exposure times	55
13	Xylanase activity of selected fusants from cross 1 between <i>Bacillus pumilus</i> M34/BE (Arg) and <i>Bacillus pumilus</i> M34/BE (His)	60
14	Xylanase activity of selected fusants from cross 2 between <i>G. sterothermophilus</i> M29/GE (Ser and <i>G. sterothermophilus</i> M29/GE (Val)	62
15	Xylanase activity of selected fusants from cross 3 between <i>Bacillus pumilus</i> M34/BE (Arg) and <i>G. sterothermophilus</i> M29/GE (Val)	64
16	Sequence homology of xylanase gene from <i>Bacillus</i> pumilus GH (AC: KT757524.1) with different <i>Bacillus</i> pumilus strains from gene bank database	72
17	Enzyme activity and specific activity of xylanase gene from transformed <i>E.coli</i> BL21 (DE3)	76

LIST OF FIGUERS

NO.		Page
1	Chemical structure of xylans from the cell walls of different plants	4
2	Hydrolysis of xylan by xylanolytic enzymes	5
3	Regulation of xylanolytic enzymes gene expression	8
4	Genetic map of pET-29 a(+) plasmid vector	19
5	Xylanase assay using xylan agar plate	37
6	Xylanse assay by dinitrosalicylic acid (DNS) method	37
7	Cellulase assay using Congo red agar plate	39
8	Effect of temperature on xylanase activity (U/ml) for <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	41
9	Effect of pH on xylanase activity (U/ml) for <i>Bacillus</i> pumilus GH and Geobacillus sterothermophilus 2027	43
10	Survival rate after UV irradiation for <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	44
11	Frequency of <i>Bacillus pumilus</i> GH mutants isolated after different UV exposure times based on xylanase activity	47
12	Frequency of <i>Geobacillus sterothermophilus</i> 2027 mutants isolated after different UV exposure times based on xylanase activity	50
13	Survival rate after EMS (40 µl/ml) treatment for <i>Bacillus pumilus</i> GH and <i>Geobacillus sterothermophilus</i> 2027	51