Relationship between skin to stone distance on computed tomography (CT) and clearance rate after ESWL

Thesis

Submitted in Partial Fulfillment of Master

Degree in Urology

By Mohammed Ismail Atya M.B.,B.ch.

Supervised by **Prof. Dr Shereen Ibrahim Ragy**

Professor of Urology Faculty of Medicine Ain Shams University

Dr. Mohammed Mohammed Yassen

Lecturer of Urology Faculty of Medicine Ain Shams University

Ain Shams University Faculty of medicine 2014

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

It is a pleasure to express my deepest thanks, gratitude and appreciation to Prof. Dr Shereen Ibrahim Ragy, Professor of Urology, Faculty of Medicine – Ain Shams University, for his keen supervision, kind guidance, valuable instructions and generous help.

Words cannot suffice my sincere thanks and gratitude to Dr. Mohammed Mohammed Yassen, Lecturer of Urology, Faculty of Medicine – Ain Shams University, for his sincere efforts, precious time, meticulous supervision and continuous guidance, correction and explanation throughout the course of this work.

I would like to express my deep thanks and gratitude to every member in **my family**, especially my mother, for their tolerance and emotional support pushing me to finish this work.

Last but not least my sincere thanks and appreciation to all my colleagues in Urology Department – Ain Shams University wishing them a happy and successful life.

Mohamed Ismail Atya

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	
Focus on Pelvicalyceal System Anatomy	5
Renal Stones Formation	10
Treatment of Upper Urinary Tract stones	21
History of ESWL	29
Physics of ESWL	34
 Hazards of ESWL, How to Prevent and How To 	o treat 48
■ Imaging	68
Patients and methods	86
Results	92
Discussion	110
Summary	119
Conclusion	122
References	123
Arabic summary	

List of Tables

Table No.	Title Pag	e No.
Table (1):	Summary of medical methods for prevention	of
	urinary stone disease.	
Table (2):	Complications after ESWL for urinary stones.	48
Table (3):	Infectious complications following ESWL	55
Table (4):	Possible renal effects of ESWLError! Bookma	rk not define
Table (5):	RI values (mean±SD) measured in patient with renal stones before and 2 weeks after	
	ESWL.	
Table (6):	Renal RI values (mean +SD) measured patients with ureteral stones before and	
	weeks after ESWL	
Table (7):	Densities (HU) of urinary calculi:	82
Table (8):	Sex and age of the patients	92
Table (9):	Laterality of stones	93
Table (10):	Number of stones	94
Table (11):	Location of stones	95
Table (12):	Fresh and Recurrent cases	96
Table (13):	Number of ESWL sessions	97
Table (14):	Showing the descriptive statistics of o	
	patients	
Table (15):	Outcome	
Table (16):	Univariate analysis of sex and age in relation results	
Table (17):	Univariate analysis of Number, recurrence a	
Table (18):	Univariate analysis of BMI, size of stones, SS stone density, Number of ESWL session	
	Number of waves in relation to results	104
Table (19):	Correlation between SSD and the studi	ied
	parameters	107
Table (20):	Multivariate logistic regression analysis predictors of stone residual	for

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	(A): Anterior view of a pelviocaliceal endocast from a left kidney, obtained according to the injection-corrosion technieques. (B): Schematic drawing of the endocast shown in A, indicates the essential elements of the kidney collecting system. cc-compound calyx; sc-single calyx; mc- minor calyx; Mc-major calyx: f-caliocal	
Fig. (2):	fornix	
Fig. (3):	View of the two morphologic types of pelviocaliceal system that constitute Group B	
Fig. (4):	A. Anterior view of right pelviocaliceal endocast reveals perpendicular minor calyx draining into the inferior caliceal group (arrow) very close to the renal pelvis. B, Anterior view of right pelviocaliceal endocast reveals perpendicular minor calyx draining into the renal pelvis (arrow). C, Anterior view of right pelviocaliceal endocast reveals perpendicular minor calyx draining into the	
Fig. (5):	renal pelvis (arrow). States of saturation.	
Fig. (6):	Dornier HMI lithotripter	
Fig. (7):	Dornier HM3 lithotripter	
Fig. (8):	Principles of ESWL	
Fig. (9):	Typical pattern of a shock wave generated by	
,	a lithotripter	
Fig. (10):	Generation principle of shock waves	37

List of Figures

Fig. No.	Title	Page No.	
Fig. (11):	Patented storz medical cylindrical Schematic view of an electro-m Shockwave generator that uses a pareflector to focus the shockwave electromagnetic coil is used to general Shockwave	agnetic arabolic ve. An ate the 3	9
Fig. (12):	Methods of SWs focusing in Electrohydraulic lithotripsy. b, Piezo lithotripsy. c and d, Electrom	electric	
	lithotripsy		
Fig. (13):	Focusing of shock wave	4	2
Fig. (14):	ESWL		
Fig. (15):	Mechanisms of stone comminution		
Fig. (16):	In vitro plaster ball test		6
Fig. (17):	Plain abdominal films showing steinstr the distal third of a, the right urete ESWL for a large right renal stone patient with bilateral renal stones, and the left ureter after ESWL for a lar	er after e in a nd b. of	
	renal stone	5	1
Fig. (18): Fig. (19):	Author's classification of steinstrassen Changes in renal RI values in patietr renal stones before ESWL and 30 min a	ns with and 3 h	
E: (00).		6	2
Fig. (20):	Axial images of kidneys with stone		ດ
Fig. (21):	patient with severe spina bifida Nephrocalcinosis in medullary sponge l		4
1.18. (71).	KUB and CT (different patient)	•	Q
Fig. (22):	3-D images of kidneys on CT (Courte slide from G. Preminger, Duke M	sy of a Medical	
E: ~ (00)·	Centre, USA)		4
Fig. (23):	An example of a MRI image in a pr	_	5

List of Figures

Fig. No.	Title Page N	10.
Fig. (24):	Relationship between renal calculus density	
	(mean HU) and number of ESWL session	81
Fig. (25):	Three measurements (0°, 45°, and 90°) from	
	center of stone to skin used to determine SSD	
	in SF patient with 8-mm lower pole kidney	
	stone	89
Fig. (26):	Sex distribution of the studied patients	93
Fig. (27):	Laterality of stones	
Fig. (28):	Location of stones	95
Fig. (29):	Recurrence of the stone	96
Fig. (30):	Percentage Number of sessions	97
Fig. (31):	Percentage of success and failure	99
Fig. (32):	Graph showing results in relation to sex	100
Fig. (33):	Graph showing results in relation to Number	
	of stones	101
Fig. (34):	Graph showing results in relation to	
	recurrence of stones	102
Fig. (35):	Graph showing results in relation to location	
	of stones	102
Fig. (36):	Graph showing results in relation to laterality	
	of stones	103
Fig. (37):	Graph showing results in relation to, BMI,	
	SSD, Size	104
Fig. (38):	Graph showing results in relation stone density	
	(HU),Number of waves	105
Fig. (39):	Graph showing results in relation to Number	
	of ESWL sessions	
Fig. (40):	Graph showing ROC curve	
Fig. (41):	Correlation between SSD and BMI	108
Fig. (42):	Correlation between SSD and number of	
	ESWL session	
Fig. (43):	Correlation between SSD and number of wave	109

List of Abbreviations

Abb.	Full term
B2M	. Beta2 microglobulin
BGAL	. B-galactosidase
CIRF	. Clinically insignificant residual fragments
CT	. Computed tomography
ESWL	. Extracorporeal shockwave lithotripsy
GFR	. Glomerular filtration rate
GI	gastrointestinal
HM	. Human model
HU	. Hounse field
IVU	. Intravenous urography
MRI	. Magnetic resonance imaging
NAG	. N-Acetyl-b-D-glucosaminidase
PCN	. Percutaneous nephrostomy
PCNL	. Percutaneous nephrolithotomy
RI	resistive index
SD	. Standard deviation
SD	. Stone density
SF	. Stone free
SSD	. Skin to stone distance
SW	. Shockwave
UNHC	. Unenhanced helical CT
US	. Ultrasound
UTI	. Urinary tract infection

Introduction

atients with urolithiasis constitute an important part of everyday urological practice. The optimal clinical management of this disease requires knowledge of the diagnostic procedures, the rational treatment of acute stone colic, stone expulsive treatment and the modern principles of removal. Management of renal stones includes pharmacotherapy, extra corporeal shock wave lithotripsy (ESWL), percutaneous nephrolithotomy (PCNL) and open surgery (Tiselius et al., 2011).

Since the introduction of ESWL by *Chaussy in (1980)*, the therapeutic strategy for urolithiasis has completely changed. Dr. Christain Chaussy of the University of Munich was the first to treat renal stone in humans using a new concept termed extracorporeal shock wave lithotripsy. Using this technology, he determined that patients could have renal or ureteral stones removed without the need of an incision or skin puncture. Due to its non invasiveness, the concept quickly gained widespread and became the treatment of choice for the vast majority, of urinary stones. The first lithotripter model (Dornier hm-1) was soon replaced by the HM-2 IN 1982, and the HM-3 in 1984. The HM-3 was first used in the United States on February 23, at Methodist Hospital in Indianapolis. Since its introduction by *Chaussy et al. in (1980)*, it has become the preferred treatment for renal & upper ureteric calculi of <2 cm

in diameter. The outcome of ESWL depends on many factors, including stone size, location, composition, density (Hounsfield unit: HU), Voltage (KV), and the number of shocks delivered. Skin to stone distance (SSD) (*Tan et al.*, 2002).

In 2005, Smith introduced helical computerized tomography (CT) as an alternative to intravenous pyelography and it has now become the gold standard for diagnosing both renal and urinary calculi, thanks to its high sensitivity (95%) and specificity (98%) (*Stuart et al.*, 2009).

In recent years, CT has gained popularity and has rapidly been establishing itself as the investigation of choice in the imaging of kidney stones. The technique for maximizing information with respect of both renal and ureteric stones is well described. No oral or intravenous contrast is used and a spiral scan is performed from the kidneys up to the symphysis pubis. Usually 5 mm reconstructions are used, but finer reconstructions are possible and should be used when looking for smaller stones (*Rao*, 2004).

Non contrast CT provides valuable information confirmative of anatomic abnormalities, in addition to the basic information regarding stone location, size, shape, density, and skin-to-stone distance (SSD). Lately, several experiments assessing the connection between information from the medical field and the efficacy of ESWL have been conducted, and Hounsfield unit (HU), SSD, and stone size have all been

______ 2 ______

identified as key factors in connection with the success of ESWL. In the present study, we attempted to determine and describe the most important clinical information collected via NCCT regarding the ESWL stone-free rate (Park et al., 2012).

Skin – to – stone distance can be readily measured by CT scan some studies showing relation between ESWL stone – free rate and SSD in renal stone patients. SSD may therefore be a useful clinical predictive factor of the success of ESWL on renal stones(Park et al., 2012).

AIM OF THE WORK

To determine whether the distance from skin to stone, as measured by computed tomography (CT) scans, could affect the stone – free rate achieved via extracorporeal shock wave lithotripsy (ESWL) in renal stone patients.

_____ A ____

Chapter One

FOCUS ON PELVICALYCEAL SYSTEM ANATOMY

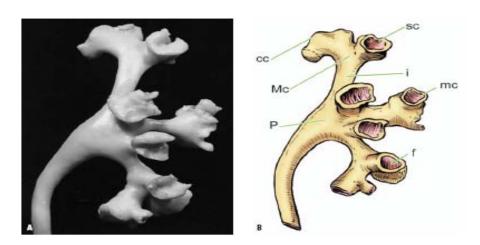


Fig. (1): (A): Anterior view of a pelviocaliceal endocast from a left kidney, obtained according to the injection-corrosion techniegues. (B): Schematic drawing of the endocast shown in A, indicates the essential elements of the kidney collecting system. cc-compound calyx; sc-single calyx; mc- minor calyx; Mc-major calyx: f-caliocal fornix (Quated from Abd El Ghani MD thesis, 2008).

Basic intrarenal anatomy:

The renal parenchyma consist of two kinds of tissue, the cortex and medulla. On longitudinal section the cortex forms the external layer. The renal medulla formed by inverted cones surrounded by cortical tissue on all sides (except at the apices) (Sampaio, 1993).

In a longitudinal section, the medullary cone called (renal pyramid). The apex of renal pyramid called (renal papilla). The layers of cortical tissue between adjacent pyramids called renal columns (cortical columns of Bertin) (Kaye et al., 1982).

A minor calvx is defined as the calvx that is in immediate apposition to a papilla. The minor calices range in number from 5 to 14. A minor calvx may be single (drains one papilla) or compound (drains two or three papillae). The polar calices often are compound. The minor calices may drain straight into an infundibulum or join to form major calices which will drain into an infundibulum. Finally, the infundibula drain into renal pelvis (figs. 1) (Sampaio et al., 1988).

Classification:

- Group A:

In this group pelvicalyceal system is composed of two major calyceal groups (superior and inferior)as aprimary divisions of renal pelvis and a midzone calyceal drainge dependent on these two major groups.

Type A-1 midzone is drained by minor calyces that are dependent on the superior or the inferior or even both calyceal groups simultaneously (fig.2, A).

Type A-2 midzone is drained by crossed calices, one draining into superior, another one to inferior calyceal group simultaneously (fig.2, B). (Sampaio, 1993).