EVALUATION OF SOME GENETICALLY MODIFIED BACTERIA ON ROOT-KNOT NEMATODE INFECTION IN TOMATO PLANT

By

GAZIEA MOHAMED SOLIMAN MOHAMED

B.Sc. Agric. Sci. (Plant Protection Cairo University, 2002 M.Sc. Agric. Sci. (Nematology), Cairo University, 2008

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY in

Agricultural Science (Agriculture Zoology)

Department of Plant protection
Faculty of Agriculture
Ain Shams University

2014

Approval Sheet

EVALUATION OF SOME GENETICALLY MODIFIED BACTERIA ON ROOT-KNOT NEMATODE INFECTION IN TOMATO PLANT

By

GAZIEA MOHAMED SOLIMAN MOHAMED

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo University, 2002 M. Sc. Agric. Sci. (Nematology), Fac. Agric., Cairo University, 2008

This thesis for PhD. degree has been approved by:
Dr. Ahmad A bd El- Megeed Salam Prof. Emeritus of Nematology, Fac. of Agric., Zagazig University
Dr. Samir Abd El-Aziz Ibrahim Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Abdalla Shehata Mohamd Kassab Prof. Emeritus of Agricultural Zoology, Faculty of Agriculture, Ain Shams University
Date of Examination: / / 2014

EVALUATION OF SOME GENETICALLY MODIFIED BACTERIA ON ROOT-KNOT NEMATODE INFECTION IN TOMATO PLANT

By

GAZIEA MOHAMED SOLIMAN MOHAMED

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo University, 2002M. Sc. Agric. Sci. (Nematology) Fac. Agric., Cairo University, 2008

Under the supervision of:

Dr. Abdallah Shehata Mohamed Kassab

Prof. Emeritus of Nematology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Fahmy Mohamed Eissa

Prof. Emeritus of Agriculture Nematology, Plant Pathology, National Research Centre

Dr. Abd Elsamie Hazm Taha

Prof. Emeritus of Nematology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

ABSTRACT

Gaziea Mohamed Soliman Mohamed: Evaluation of some Genetically Modified Bacteria on Root-Knot Nematode in Tomato Plant. Unpublished PhD. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2014.

The nematicidal activity of the wild types of the lytic bacteria, Serratia marcescens, Pseudomonas fluoresences and Bacillus licheniformis and their ten mutants (overproducing chitinase and alkaline protease *via* using mutation), namely: mutant SM 190, mutant SM 167, mutant SM 36 and. mutant. SM 21 from S. marcescens, mutant BL 3, mutant BL 132, mutant BL21, mutant BL 37 and, mutant BL 40 from B. licheniformis and mutant PF 63 from P. fluoresences which were produced by using mutagenic chemicals (MMS, EMS) and three fusants (overproducing chitinase and alkaline protease *via* recombinant strains on protoplast fusion technique) and the parents of two strains of S. marcescens (isolate No. 18) and B. licheniformis (isolate No. 10), were evaluated against juvenile survival and egg hatching of the root – knot nematode, Meloidogyne incognita, as a safer and an environmental friendly control alternative to chemical nematicides. They were evaluated as lytic bacteria (chitinase and alkaline protease) on juvenile survival, egg hatching and on gelatinous matrix forming the eggmasses of M. incognita under laboratory conditions by using standard (S) or (S /10), and exposure periods (24, 48 and 72 hrs).

The results indicated that, the three fusants achieved the best effect on juveniles compared to the mutants and their parents. This effect may be due to increase production of lytic enzymes under this study and compilation of the best qualities by protoplast fusion. The numbers of either viable juveniles (VJ) or non viable juveniles (NVJ) were reduced at two dilutions (S and S/10) at different exposure periods (24, 48 and 72 hr) compared to untreated control and consequently decreasing the numbers of both (VJ) and (NVJ). Most of the dead nematode bodies were degraded and destroyed by these fusants. In this respect, fusant F103 achieved the

most effective mortality and had the least numbers of juveniles as compared to the bacterial parents and untreated control. The results were the same in case of using eggmasses.

Effect of wild types and different mutants and the parents of two strains *S. marcescens* (mutant No. 18) and *B. licheniformis* (mutant No. 10) were tested against nematode development in case of using juveniles as a source of tomato plant infection. Four application methods of adding bacteria in soil were applied as follows:

- 1- Adding nematodes, *M. incognita* and after one week adding bacteria.
- 2- Adding nematodes, *M. incognita* and bacteria in the same time.
- 3- Adding bacteria to soil and after one week adding nematodes.
- 4- Adding nematodes, *M. incognita* and bacteria together and after one week another dose of bacteria was added.

The best application of bacteria on the infected soil of tomato plant with nematodes, *M. incognita* was last treatment. In this application the mutant BL 21 sustained the best effect on controlling the juveniles, the galls and the eggmasses formation compared to the untreated control. These reductions reached 92.15 % of juveniles mortality in soil and 77.08 % of gall formation and 88.43 % of eggmass numbers. The mutant SM 36 recorded 90.72 % number of juveniles mortality in soil, 70.63 % of gall formation and 86.50 of eggmasses compared to the wild type of SM which attained the lowest reduction in either of gall formation or eggmasses number (26.49 % and 30.85%; respectively). These reductions were corresponding to improvements of tomato growth.

ACKNOWLEDGMENT

The author wishes to express her deep gratitude and appreciation to **Prof. Dr. Abdallah Shehata Kassab** Emeritus Professor of Nematology, Faculty of Agriculture,

Ain Shams University for his valuable scientific supervision, continuous advice,

encourage during the course of this work and for writing the manuscript. The deepest gratitude and sincere appreciation to late **Prof. Dr. Abd – El Samie Hazm**, Professor of Nematology, Faculty of Agriculture, Ain Shams University for collaboration in supervision and encourage during the course of this work.

Sincere appreciation are due to **Prof. Dr**. **Mohamed Fahmy M. Eissa** Emeritus Prof. of Nematology, Plant Pathology Department, National Research Centre, Dokki, Cairo, Egypt, for suggesting the problem, his valuable scientific supervision, and sincere help.

I would like to thank **Prof.Dr. Asherif Bakry Abd E-Razik** Prof. of Genetics, Dept. Faculty of Agriculture, Ain Shams University for Sincere support and efforts for helping me .

I wish to express thanks to **Prof. Dr. Ahmed El- Sayed Ismail** Prof. of Nematology, Plant Pathology Department, National Research Centre, Dokki, Cairo, Egypt, for his co-supervision and co-guidance of this work,.

Sincere appreciation to **Dr. Usama Mohamed Badr** Researcher of Genetic and Cytology Department, National Research Centre for his co-supervision and help given in preparation of the manuscript.

Thanks are also due to the authorities of extended NRC and to all the staff members of Agricultural Nematology, Plant Pathology Department, National Research Centre, Dokki, Cairo, Egypt.

CONTENT

Title	Page
LIST OF TABLES	vi
LIST OF FIGURES	vii
I-INTRODUCTION	1
II-REVIEW OF LITERATURE	4

1-Distribution and impact of Meloidogyne incognita	4
2- Biological control	5
3- Chitin	6
4- Chitinases	7
5- Proteases	8
6- Bacillus ssp. as biocontrol agents	9
7-Serratia marcescens	12
8- Pseduomonas spp.	14
9- Genetic improvement	18
9.1. Mutation	19
9.2.Protoplast fusion	20
III-MATERIAL AND METHODS	24
1. Nematodes stock cultures	24
1.1 Preparation of M. incognita inocula	24
2. Bacterial strains	24
3. Bacterial Media	25
3.1. Nutrient agar	25
3.2. Luria broth Medium (LB)	26
3.4.Soft agar	26
3.4.Buffer solution	26
3.5. Minimal medium	26
4. Chitinolytic enzyme	26
4.1.Preparation of colloidal chitin	26
4.2.Chitinase assay	27
4.3.Protease assay	27
5. Preparation of bacterial incoula	27
6. Genetic improvement	27
6.1. Improvement via mutagenesis	27
6.1.1. MMS (Methyl Methane Sulfonate) treatments	27
6.1.2. EMS (Ethyl Methane Sulfonate) treatments	28
6. 2. Improvement via protoplast fusion	28
6.2.1. Preparation of Protoplasts: positive bacteria	28
Hypertonic media	

6.2.2. Preparation of Protoplasts: negative bacteria	28
6.3. Amino acid	28
6.4. Ntibiotics	30
7. Laboratory experiment	30
7.1. Nematocidial Activity (In vitro Bioassay Test)	30
7.1.1. Effect of wild type and different mutants of lytic	30
bacteria and fusants on activity of Meloidogyne incognita	
juveniles.	
7.1.2. Effect of wild type and different mutants of lytic	31
bacteria and fusants on activity of Meloidogyne incognita egg-	
masses	
8. Greenhouse experiments	32
8.1. Effect of wild type and different mutants of lytic bacteria	33
on development of Meloidogyne incognita infection by	
juveniles on tomato plant.	
8.2. Effect of wild type and different fusants of lytic bacteria,	35
on development of <i>Meloidogyne incognita</i> using juveniles as a	
source of inocula in case using application Infecting tomato	
plant with nematodes, M. incognita and after 1 week added	
bacteria and after another week added another dose of	
bacteria.	
IV-RESULT	36
1. Genetic studies	36
11. Mutation studies	36
1.1.1. First step MMS treatment	36
1.1.2. Seconed step EMS treatment	54
1.2. Protoplast fusion	65
2. Nematodes control	69
2.1. In-vitro studies	69
2.1.1. Effect of wild type of some lytic bacteria and their	
mutants on mortality of M. incognita juveniles under	
laboratory conditions.	69
2.1.2. Effect of some parental lytic bacteria and their	

Bacterial strains collections	25
. Title	F
LIST OF TABLES	
ARABIC SUMMARY	
APPENDIX	146
VII. REFERENCES	131
. SAMMARY43	127
. DISCUSSION	115
nematodes and after one week adding bacteria	
bacteria species on <i>M. incognita</i> development by adding	
2.2.4. Effect of some wild types and mutants of some	99
nematodes inocula and bacteria together	92
bacteria species on <i>M. incognita</i> development by adding	
2.2.3. Effect of some wild types and mutants of some	
after one week adding nematodes.	85
bacteria species on <i>M. incognita</i> byadding bacteria then	
2.2.2. Effect of some wild types and mutants of some lytic	, 0
doses of bacteria after one week	78
nematodes inocula and bacteria togther then adding another	
bacteria species on <i>M. incognita</i> devlopment by adding	
2.2.1. Effect of some wild types and mutants of some	70
2.2. Greenhouse experiments	78
laboratory conditions	70
2.1.4. Effect of parental of some lytic bacteria and their fusants on eggmasses inhibition of <i>M. incognita</i> under	76
laboratory conditions	73
mutants on eggmass inhibition of <i>M. incognita</i> under	72
2.1.3. Effect of wild type of some lytic bacteria and their	
laboratory conditions.	71
1.1	71

1.

2.

3.	List of antibiotics, their sources and concentration	30
4.	Parental strain enzymes production	35
5.	Serrstia marcescens isolates enzymes production from MMS treatment	37
6.	Percentage ranges of isolates production and its number of Serratia marcescens	43
7.	Production of enzymes by <i>Pseudomonas fluorescens</i> production based on wild type Percentage which were obtained from MMS	44
8.	Percentage ranges of isolates production and its number of <i>Pseudomonas fluorescens</i>	47
9.	Production of enzymes by <i>Bacillus licheniformis</i> production based on wild type Percentage which were obtained from MMS	48
10.	Percentage ranges of isolates production and its number of <i>Bacillus licheniformis</i>	53
11.	Alkaline protease production of mutant No. 63 of <i>Pseudomonas fluorescens</i> EMS treatment	55
12.	Enzymes production of mutant No.167 of Serratia marcescens EMS treatment	57
13.	Enzymes production of mutant No.190 of Serratia marcescens EMS treatment	59
14.	Enzymes production of mutant No.3 of <i>Bacillus lichieniformis</i> EMS treatment	61
15.	Enzymes production of mutant No.132 of <i>Bacillus lichieniformis</i> EMS treatment	63
16.	The treatment by MMS and EMS and its mutants	65
17.	Production of chitinase and Alkaline protease by protoplast fusion	66
18.	Effect of the wild type of some lytic bacteria and their mutants on mortality of <i>M. incognita</i> juveniles under laboratory conditions	70

19.	Effect of the parantal of some lytic bacteria and their fusants on mortality of <i>M. incognita</i> juveniles under laboratory conditions	72
20.	Effect of the wild type of some lytic bacteria and their mutants on eggmass inhibition of <i>M. incognita</i> under laboratory conditions	74
21.	Effect of some of parental lytic bacteria and their fusants on eggmasses inhibition of M . $incognita$ under laboratory conditions.	77
22.	Effect of some wild types and mutants of some bacteria species on <i>M. incognita</i> development by adding nematodes inoculum and bacteria together, then adding one week	11
23.	later	79 82
24.	Effect of some wild types and mutants of some bacteria species on <i>M. incognita</i> development by adding bacteria then nematodes inculation after one week	86
25.	Tomato growth as influenced by <i>M.incognita</i> , wild type of some bacteria and their mutants by adding bacteria then nematodes inculation	89
26.	Effect of some wild types and mutants of some bacteria species on M . $incognita$ development by adding nematodes inoculum and bacteria	0.2
27.	together Tomato growth as influenced by <i>M .incognita</i> , wild type of some bacteria and their mutants by adding nematodes inoculum and bacteria	93 96
28.	Effect of some wild types and mutants of some bacteria species on <i>M. incognita</i> development by adding nematodes then bacteria	90
20	Tomato growth as influenced by <i>M .incognita</i> , wild type of some	100
29.	bacteria and their mutants by adding nematode inoculation then one week added bacteria	103
30.	Effect of some parents and fusants of some bacteria species on <i>M. incognita</i> development by adding nematodes inocula and bacteria together then adding another dose of bacteria after one	
31.	week	108
	week	111

LIST OF FIGURES

No.	Title	Page
1.	Comparing between parental product strains of lytic bacteria	30
2.	Serratia marcescens enzymes production by MMS treatment comparing to wild type	34
3.	Pseudomans fluorescens enzymes by MMS treatment comparing to wild type production	47
4.	Bacillus licheniformis enzymes production MMS treatment comparing to wild type	53
5.	Effect of mutant strains of somelytic <i>bacteria</i> on reduction percentages of <i>M. incognita</i> juveniles in soil infecting tomato plant	80
6.	Effect of mutant strains of some lytic bacteria on reduction percentages of galls number of <i>M. incognita</i> infecting tomato plant	80
7.	Effect of mutant strains of some lytic bacteria on reduction percentages of <i>M. incognita</i> eggmasses infecting tomato	

	plant	81
8.	Effect of <i>M. incognita</i> infection with juveniles on shoot length of tomato growth as influenced by mutant strains of some bacteria and wild types	83
9.	Effect of <i>M. incognita</i> infection with juveniles on % increase of shoot fresh weight of tomato as influenced by mutant strains of some bacteria and wild types	83
10.	Effect of <i>M</i> .incognita infection with juveniles on % increase of shoot dry weight of tomato as influenced by mutant strains of some bacteria and wild types	84
11.	Effect of <i>M. incognita</i> infection with juveniles on root length of tomato as influenced by mutant strains of some bacteria and wild types	84
12.	Effect of <i>M. incognita</i> infection with juveniles on root fresh weight of tomato growth as influenced by mutant strains of some bacteria and wild types	85
13.	Effect of mutant strains of <i>some bacteria</i> on % reduction of juveniles in soil of <i>M. incognita</i> infecting tomato plant	87
14.	Effect of mutant strains of some bacteriaon % reduction of number of galls of <i>M. incognita</i> infecting tomato plant	87
15.	Effect of mutant strains of some bacteriaon % reduction of number of eggmasses of <i>M. incognita</i> infecting tomato plant	88
16.	Effect of <i>M. incognita</i> infection by juveniles on root shoot length of tomato growth as influenced with mutant strains of some bacteria	90
17.	Effect of <i>M. incognita</i> infection by juveniles on % increase of shoot fresh weight of tomato influenced with mutant strains of some bacteria.	90
18.	Effect of <i>M</i> .incognita infection by juveniles on % increase of shoot dry weight of tomato as influenced with mutant strains of some bacteria	91
19.	Effect of <i>M. incognita</i> infection by juveniles on root length of tomato as influenced with mutant strains of some bacteria.	91
20.	Effect of <i>M. incognita</i> infection by juveniles on root fresh weight of tomato as influenced with mutant strains of some bacteria	92

21.	Effect of mutant strains of some bacteriaon % reduction of juveniles in soil of <i>M. incognita</i> infecting tomato plant	94
22.	Effect of mutant strains of some bacteria on % reduction of number of galls of <i>M. incognita</i> infecting tomato plant	94
23.	Effect of mutant strains of some <i>bacteria</i> on % reduction of number of eggmasses of <i>M. incognita</i> infecting tomato plant	95
24.	Effect of <i>M. incognita</i> infection by juveniles on shoot length of tomato as influenced with mutant strains of some bacteria	97
25.	Effect of <i>M. incognita</i> infection by juveniles on % increase shoot fresh weight of tomato influenced with mutant strains of some bacteria.	97
26.	Effect of <i>M</i> .incognita infection by juveniles on % increase of shoot dry weight of tomato as influenced with mutant strains of some bacteria	98
27.	Effect of <i>M. incognita</i> infection by juveniles on root length of tomato as influenced with mutant strains of some bacteria.	98
28.	Effect of <i>M. incognita</i> infection by juveniles on root fresh weight of tomato as influenced with mutant strains of some bacteria	99
29.	Effect of mutant strains of some bacteriaon % reduction of juveniles in soil of <i>M. incognita</i> infecting tomato plant	101
30.	Effect of mutant strains of some bacteriaon % reduction of number of galls of <i>M. incognita</i> infecting tomato plant	101
31.	Effect of mutant strains of <i>some bacteria</i> on % reduction of number of eggmasses of <i>M. incognita</i> infecting tomato plant	102
32.	Effect of <i>M. incognita</i> infection by juveniles on shoot length of tomato growth as influenced with mutant strains of some bacteria	104
33.	Effect of <i>M. incognita</i> infection by juveniles on shoot fresh weight of tomato growth as influenced with mutant strains of some bacteria	104
34.	Effect of <i>M</i> .incognita infection by juveniles on % increase of shoot dry weight of tomato as influenced with mutant strains of some bacter	105

35.	Effect of <i>M. incognita</i> infection by juveniles on root length of tomato as influenced with mutant strains of some bacteria	105
36.	Effect of <i>M. incognita</i> infection by juveniles on root fresh weight of tomato as influenced with mutant strains of some bacteria	106
37.	Effect of fusants (F) strains and parents (P) of some bacteria on % reduction of juveniles in soil of <i>M. incognita</i> infecting tomato plant	109
38.	Effect of fusants (F) strains and parents (P) of some bacteriaon % reduction of number of galls of <i>M. incognita</i> infecting tomato plant	109
39.	Effect of fusants (F) strains and parents (P) of <i>some bacteria</i> on % reduction of number of eggmasses of <i>M. incognita</i> infecting tomato plant	110
40.	Effect of <i>M. incognita</i> infection by juveniles on shoot length of tomato as influenced with fusants (F) strains of some bacteria and parents (P)	112
41.	Effect of <i>M. incognita</i> infection by juveniles on shoot fresh weight of tomato as influenced with fusants (F) strains of some bacteria and parents (P)	112
42.	Effect of <i>M. incognita</i> infection by juveniles on shoot dry weight of tomato growth as influenced with fusants (F) strains of some bacteria and parents (P)	113
43.	Effect of <i>M. incognita</i> infection by juveniles on shoot length of tomato growth as influenced with fusants (F) strains of some bacteria and parents (P)	113
44.	Effect of <i>M. incognita</i> infection by juveniles on root dry weight of tomato as influenced with fusants (F) strains of some bacteria and parents (P)	114

I. INTRODUCTION

One of the main challenges of the first half of this millennium will be the production of food and feed in quantities, large enough to feed the ever-increasing world population. To feed the entire world population and improve their health in the future there is a clear need to improve productivity and nutritional quality of food crops. The equilibrium between human beings and their food supply is felt unsound. This encouraged scholarly thought to solve the problem. One traditional