Electroencephalographic Response during Procedural Pain in Neonates

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Bγ Laila Taher Bassiouni

M.B., B.Ch.
Faculty of Medicine - Cairo University

Under Supervision of Prof. Hesham Abdel Samie Awad

Professor of Pediatrics and Neonatology Faculty of Medicine – Ain Shams University

Prof. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics and Neuropediatrics Faculty of Medicine – Ain Shams University

Dr. Rania Mohamed Abdou

Lecturer of Pediatrics and Neonatology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2017

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wesham Abdel**Samie Awad, Professor of Pediatrics and Neonatology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Sahar**Mohamed Ahmed Hassanein, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Rania**Mohamed Abdou, Lecturer Pediatrics and
Neonatology, Faculty of Medicine, Ain Shams
University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Laila Eaher Bassiouni

List of Contents

Title	Page No.
List of Tables	4
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	2
Review of Literature	
■ Electroencephalography (EEG)	3
■ Pain	21
Materials and Methods	34
Results	43
Discussion	69
Summary	81
Conclusion	84
Recommendations	84
References	85
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Developmental EEG characteristic premature and term infants:	
Table (2):	Acute physiologic response to no stimuli	oxious
Table (3):	Factors influencing reported long impact of neonatal pain	
Table (4):	NIPS	36
Table (5):	Clinical data of the patients before stimulation (baseline data)	_
Table (6):	Temperature, random blood sugar blood pressure of the patients after	· pain
Table (7):	stimulation without soothing	sugar thout
Table (8):	Heart rate, oxygen saturation and scale of the neonates before and d pain stimulation without soothing, d NNS and during sucrose suckling	pain luring luring
Table (9):	Comparison between log frequency amplitude of alpha waves on F3 and	7 and
Table (10):	Comparison between log frequency amplitude of beta waves on F3 and F	and
Table (11):	Comparison between log frequency amplitude of delta waves on F3 and l	
Table (12):	Comparison between log frequency amplitude of theta waves on F3 and	
Table (13):	Correlation between vital signs and scale together with EEG waves at	F3 at
	pain without soothing	57

List of Cables (Cont...)

Table No.	Title	Page No.
Table (14):	Correlation between vital signs and scale together with EEG waves a during pain without soothing	at F4
Table (15):	Correlation between vital signs and scale together with EEG waves at pain with NNS.	F3 at
Table (16):	Correlation between vital signs and scale together with EEG waves at pain with NNS.	F4 at
Table (17):	Correlation between vital signs and scale together with EEG waves at pain with sucrose suckling	F3 at
Table (18):	Correlation between vital signs and scale together with EEG waves at pain with sucrose suckling	F4 at

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Examples of alpha, beta, theta and delta electroencephalography frequencies	5
Figure (2):	27 weeks PCA. tracé discontinu and a burst of billaterally synchronous, polyfrequency activity	11
Figure (3):	33 weeks PCA. bilateral, asynchronous, temporal alpha bursts	12
Figure (4):	Quiet sleep non-rapid eye movement tracé alternant.	15
Figure (5):	A: electrodes attachment. B: 10-20 system	17
Figure (6):	Anatomical and functional development related to pain perception	24
Figure (7):	The international 10 to 20 reduced EEG montage system for neonates	37
Figure (8):	Applying Head cap for a neonate during wireless EEG recording.	38
Figure (9):	Nicolette wireless EEG.	39
Figure (10):	EEG spectral analysis	41
Figure (11):	Sex distribution among the patients	44
Figure (12):	Gestational age of the patients.	44
Figure (13):	Comparison of heart rate at different events of pain.	51
Figure (14):	Comparison of oxygen saturation at different events of pain.	51
Figure (15):	Comparison of pain scale at different events of pain.	52

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (16):	Correlation between random sugar and EEG frequency of waves at F3 at pain without soothing	alpha	58
Figure (17):	Correlation between random sugar and EEG frequency of beta vat F3 at pain without soothing	vaves	58
Figure (18):	Correlation between heart rate EEG frequency of beta waves at pain without soothing	F4 at	60
Figure (19):	Correlation between oxygen saturand EEG frequency of delta waves at pain with NNS.	at F4	63
Figure (20):	Correlation between heart rate EEG frequency of theta waves at pain with sucrose suckling	F3 at	65
Figure (21):	Correlation between oxygen saturand pain scale at pain with su suckling.	ration icrose	65
Figure (22):	Correlation between oxygen saturand EEG frequency of alpha way F3 at pain with sucrose suckling	ation es at	66
Figure (23):	Correlation between oxygen saturand EEG frequency of delta waves at pain with sucrose suckling	ation at F3	
Figure (24):	Correlation between oxygen satur and pain scale at pain with su suckling.	ration icrose	68

List of Abbreviations

Abb.	Full term
aEEG	Amplitude Integrated Electroencephalography
AS	
	Continuous activity
<i>Cps</i>	
	Discontinuous activity
	Electroence phalogram
<i>EMG</i>	Electromus clogram
EOG	Electrooculogram
<i>FFT</i>	Fast Fourier Transformation
<i>NICU</i>	Neonatal Intensive Care Unit
<i>NIPS</i>	Neonatal/infant pain scale
<i>NMDA</i>	N- $methyl$ - D - $aspartate$
<i>NNS</i>	Non-nutritive suckling
NR	Nonreactive
<i>NREM</i>	Non-rapid eye movement
PCA	Postconceptional age
<i>QEEG</i>	$Quantitative\ EEG$
<i>QS</i>	Quiet sleep
<i>R</i>	Reactive
<i>REM</i>	Rapid eye movement
SEF	Spectral edge frequency
	Sleep-wake cycling
<i>TF</i>	Time frequency
V	Vertex

Introduction

Newborn infants undergoing intensive care may become exposed to a considerable number of painful experiences (Barker et al., 1995 and Annad et al., 2006). Identification and assessment of pain in newborn infants is challenging because the infant's ability to communicate pain is limited. Pain assessment instruments for clinical use have mainly been constructed for evaluation of acute procedure-related pain responses (Stevens et al., 2000). There is a growing international request to produce valid instruments for assessing both continuous and procedure-related pain in newborns (Hummel et al., 2006 and Annad, 2007).

Although the somatic sensation of painful stimuli undoubtedly takes place within hundreds of milliseconds after the stimulus, several studies have demonstrated that painful stimuli also produce more long-lasting behavioral and physiologic responses. Resulted in a change in EEG activity and this change was attenuated by oral sucrose given before the noxious stimulus (Fernandez et al., 2003).

Sucrose is a naturally occurring sweetener with analgesic effects in newborns .oral sucrose is frequently given to relieve procedural pain in neonates on the basis of its effect on behavioural and physiological pain scores. Sucrose administration reduces pain – specific brain and spinal cord activity after an acute noxious procedure in newborn (Annad et al., 2006).

AIM OF THE WORK

The aim of this study is to asses

- 1- Effect of pain on neonatal vital data and spectral EEG analysis.
- 2- Whether sucrose administration reduces pain during acute painful procedures in neonates.

Chapter 1

ELECTROENCEPHALOGRAPHY (EEG)

This activity occurring at the surface of the brain. This activity appears on the screen of the EEG machine as waveforms of varying frequency and amplitude measured in voltage (specifically microvoltages). EEG waveforms are generally classified according to their frequency, amplitude, and shape, as well as the sites on the scalp at which they are recorded. The most familiar classification uses EEG waveform frequency (eg, alpha, beta, theta, and delta) (Niedermeyer and Lopes da Silva, 1993; Blume and Kaibara, 1999; Fisch and Spehlmann, 1999).

Information about waveform frequency and shape is combined with the age of the patient, state of alertness or sleep, and location on the scalp to determine significance.

Normal EEG waveforms, like many kinds of waveforms, are defined and described by their frequency, amplitude, and location (*Stern and Engel*, 2004).

- Frequency (Hertz, Hz) is a key characteristic used to define normal or abnormal EEG rhythms.
- Most waves of 8 Hz and higher frequencies are normal findings in the EEG of an awake adult. Waves with a frequency of 7 Hz or less often are classified as abnormal in

awake adults, although they normally can be seen in children or in adults who are asleep. In certain situations, EEG waveforms of an appropriate frequency for age and state of alertness are considered abnormal because they occur at an inappropriate scalp location or demonstrate irregularities in rhythmicity or amplitude (*Ioannides et al.*, 2004).

- Some waves are recognized by their shape, scalp location or distribution, and symmetry. Certain patterns are normal at specific ages or states of alertness and sleep.
- The morphology of a wave may resemble specific shapes, such as vertex (V) waves seen over the vertex of the scalp in stage 2 sleep or triphasic waves that occur in the setting of various encephalopathies.

Frequency:

The frequencies most brain waves range from are 0.5-500 Hz. However, the following categories of frequencies are the most clinically relevant:

- Alpha waves 8-13 Hz
- Beta waves Greater than 13 Hz
- Theta waves 3.5-7.5 Hz
- Delta waves 3 Hz or less.

Figure (1): Examples of alpha, beta, theta and delta electroencephalography frequencies

Alpha waves - 8-13 Hz

- Alpha waves generally are seen in all age groups but are most common in adults. They occur rhythmically on both sides of the head but are often slightly higher in amplitude on the nondominant side, especially in right-handed individuals. A normal alpha variant is noted when a harmonic of alpha frequency occurs in the posterior head regions. They tend to be present posteriorly more than anteriorly and are especially prominent with closed eyes and with relaxation.
- Alpha activity disappears normally with attention (eg, mental arithmetic, stress, opening eyes). In most instances, it is regarded as a normal waveform.
- An abnormal exception is alpha coma, most often caused by hypoxic-ischemic encephalopathy of destructive processes in the pons (eg, intracerebral hemorrhage). In alpha coma, alpha waves are distributed uniformly both anteriorly and posteriorly in patients who are unresponsive to stimuli.

Review of Jiterature —

Beta waves - Greater than 13 Hz

- Beta waves are observed in all age groups.
- They tend to be small in amplitude and usually are symmetric and more evident anteriorly.
- Drugs, such as barbiturates and benzodiazepines, augment beta waves.

Theta waves - 3.5-7.5 Hz

- Theta waves normally are seen in sleep at any age. In awake adults, these waves are abnormal if they occur in excess.
- Theta and delta waves are known collectively as slow waves.

Delta waves - 3 Hz or less

- These slow waves have a frequency of 3 Hz or less.
- They normally are seen in deep sleep in adults as well as in infants and children.
- Delta waves are abnormal in the awake adult.
- Often, they have the largest amplitude of all waves.
- Delta waves can be focal (local pathology) or diffuse (generalized dysfunction).

Source of EEG activity:

Neurons, or nerve cells, are electrically active cells that are primarily responsible for carrying out the brain's functions. Neurons create action potentials, which are discrete electrical signals that travel down axons and cause the release of chemical neurotransmitters at the synapse, which is an area of near contact between two neurons. This neurotransmitter then activates a receptor in the dendrite or body of the neuron that is on the other side of the synapse, the post-synaptic neuron. The neurotransmitter, when combined with the receptor, typically causes an electrical current within the dendrite or body of the post-synaptic neuron. Thousands of post-synaptic currents from a single neuron's dendrites and body then sum up to cause the neuron to generate an action potential. This neuron then synapses on other neurons, and so on (Nunez and Srinivasan, 1981).

EEG reflects correlated synaptic activity caused by post-synaptic potentials of cortical neurons. The ionic currents involved in the generation of fast action potentials may not contribute greatly to the averaged field potentials representing the EEG. More specifically, the scalp electrical potentials that produce EEG are generally thought to be caused by the extracellular ionic currents caused by dendritic electrical activity, whereas the fields producing magnetoencephalographic signals are associated with intracellular ionic currents (*Buzsaki*, 2006).