

DETERMINATION OF CASING WEAR FACTOR FOR PROPOSED NEW WELLS USING SIMULATION BACK MODELING

By

Hany Kamal Hassan Abo El-Enein

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science in
Petroleum Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

DETERMINATION OF CASING WEAR FACTOR FOR PROPOSED NEW WELLS USING SIMULATION BACK MODELING

By Hany Kamal Hassan Abo El-Enein

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Abdel-Alim Hashem El-Sayed

Professor of Petroleum Engineering Department of Mining Petroleum and Metallurgy Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2017

DETERMINATION OF CASING WEAR FACTOR FOR PROPOSED NEW WELLS USING SIMULATION BACK MODELING

By Hany Kamal Hassan Abo El-Enein

A Thesis Submitted to
The Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science in
Petroleum Engineering

Approved by the Examining Committee:
Prof. Dr. Abdel-Alim Hashem El-Sayed, Thesis Main Advisor
Prof. Dr. Fouad Khalaf Mohammed, Internal Examiner
Dr. Mohammed Mahmoud El-Assal, External Examiner Manager of Triple L Oil Services, TLOS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Engineer's Name: Hany Kamal Hassan Abo El-Enein.

Date of Birth: 28 / Aug / 1982

Nationality: Egyptian

E-mail: Eng_Hany_Kamal@yahoo.com

Phone: +201226130178

Address: El-Gamea Sq., Heliopolis, Cairo, Egypt.

Registration Date: 01/10/2011 **Awarding Date:**/.2017

Degree: Master of Science. **Department:** Petroleum Engineering.

Supervisors:

Prof. Abdel-Alim Hashem El-Sayed.

Examiners:

Prof. Abdel-Alim Hashem El-Sayed (Thesis main advisor)

Prof. Fouad Khalaf Mohammed (Internal examiner)

Dr. Mohammed Mahmoud El-Assal (External examiner)

Manager of Triple L Oil Services, TLOS

Title of Thesis:

Determination of Casing Wear Factor for Proposed New Wells Using Simulation Back Modeling

Key Words:

Wear factor; Actual wear; Simulated wear; Maximum wear factor.

Summary:

In this thesis, two wells used to introduce method to determine casing wear factor, by using simulator software and real field parameters. Simulated wear graph compared to actual wear graph to find proper wear factor, which represent worst wear scenario. Thesis focuses on worst wear scenario, because it represents the maximum wear factor, which recommended in the prediction of casing wear in similar wells at design phase.

ACKNOWLEDGMENTS

I thank the merciful Allah for giving me the strength and ability to complete my studies.

I greatly appreciate the massive effort by my professors & supervisors to guide me through the various phases of this study, Specially Prof. Dr. Abdel-Alim Hashem El-Sayed for his patience and continuous support all the times.

Eng. Hany Kamal

DEDICATION

To all those who helped and motivated me to finish this work, I couldn't have done it without you.

Eng. Hany Kamal

TABLE OF CONTENTS

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	
NOMENCLATURES	1X
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
1.1. Casing Wear Problem Appearance	2
1.1.1. In China	
1.1.2. In New Zealand	2
1.1.3. In Canada	3
1.2. Definition of Wear and Casing Wear	3
1.3. The Effect of Casing Wear and Its Consequences	
1.4. Organization of Thesis	
CHAPTER 2 :LITERATURE REVIEW	
2.1. Overview of Casing Wear	6
2.2. Casing Wear Mechanisms	
2.2.1. Types of casing wear mechanisms	
2.2.1.1. Two body abrasive wear	
2.2.1.2. Two- body adhesive wear	
2.2.1.3. Three-body abrasive wear	12
2.3. Causes of Casing Wear	14
2.3.1. Hole curvature	14
2.3.2. Casing wear while rotation	17
2.3.3. Casing wear while tripping	21
2.3.4. Casing wear by wireline	23
2.4. Casing wear groove geometry	26
2.4.1. Wear groove Depth Comparison	28
2.5. Parameters Affecting Casing Wear	29
2.5.1. Casing wear resistance	
2.5.2. Contact force	
2.5.3. Contact area	
2.5.4. Well path - dogleg severity	33

2.5.4.1. Dogleg types	36
2.5.5. Mud composition	
2.5.5.1. Effect of weighting material	
2.5.5.2. Effect of additives	37
2.5.5.3. Effect of sand	37
2.5.5.4. Mud composition summary	38
2.5.6. Drill pipe hardbanding	38
2.5.6.1. Tool joint smoothness acceptance	40
2.5.7. Accumulated rotating time and speed	40
CHAPTER 3 CASING WEAR MEASUREMENTS AND	
CALCULATIONS	42
3.1. Casing Wear Logging	42
3.1.1. Casing wear logging tools	42
3.1.1.1. Cased-hole calipers	42
3.1.1.2. Electromagnetic phase-shift tools	43
3.1.1.3. Flux leakage tools	44
3.1.1.4. Ultrasonic imaging tool (USIT)	
3.1.2. USIT measurement principle	
3.1.2.1. Ultrasonic log display	
3.1.2.2. Ultrasonic tool limits	
3.1.3. USIT casing wear interpretation	
3.1.3.1. Measuring casing wear	
3.2. Casing Wear Calculations	
3.3. Wear Efficiency Model	53
3.3.1. Wear volume in case of rotation	
3.3.2. Wear volume in case of tripping	56
3.3.3. Wear volume in case of running wireline	56
3.4. Depth of Casing Wear Groove	57
3.5. Influence of Casing Wear Factor	58
3.5.1. Uncertainty of casing wear factor	59
CHAPTER 4: STATEMENT OF THE PROBLEM AND RE	SEARCH
METHDOLOGY	61
4.1. Statement of The Problem	61
4.2. Research Methodology	61
4.2.1. DrillNet	61
4.2.2. Creating actual wear graph:	62
4.2.3. Simulation Method	63
4.2.3.1. Drillnet Input and Workflow	64
4.2.3.2. Project	64
4.2.3.3. Survey	64
4.2.3.4. Wellbore	
4.2.3.5. Operation	66

4.2.3.6. T	ubular	68
4.2.3.7. P	references	70
4.2.3.8. V	Vear Factor	71
CHAPTER 5:	RESULTS AND DISCUSSION	73
5.1. Simulate	ed Wells Results:	73
5.1.1. Well-	01	73
5.1.2. Well-	02	77
5.2. Simulate	ed Wells Using Worst Case Wear Factor	81
5.3. General	Discussion	86
CHAPTER 6 C	ONCLUSIONS	88
REFERENCES		90
APPENDIX A:	WEAR TEST MACHINE	94
APPENDIX B:	CASING WEAR TEST STANDARDS	96
APPENDIX C:	USI TOOL SPECIFICATIONS	120

LIST OF TABLES

Table 2.1: Experimental casing penetration rates by rotating tool joint [7]	20
Table 2.2: Experimental tripping wear coefficients (C _{wt}). [7]	
Table 2.3 Experimental wireline wear coefficients (C _{ww}).[7]	26
Table 2.4: Magnitude of various types of wear Depth. [7]	28
Table 2.5: Wear increases with increasing of contact force. [11]	31
Table 2.6: Summary of friendly hardbanding wear test. [43]	39
Table 2.7: Applicable total depths in the presence of wear limit. [16]	41
Table 3.1: Materials acoustic properties [46]	47
Table 3.2: Wear tracks colour codes	49
Table 4.1: Sections of operational parameter	67
Table 4.2: Bottom hole assembly [BHA]	69
Table 5.1: Well -01 accumulated data.	73
Table 5.2: Well -01 casing program	74
Table 5.3: Wear factors Well-01.	74
Table 5.4: Well -02 accumulated data.	77
Table 5.5: Well -02 casing program.	
Table 5.6: Wear factors Well-02.	78
Table 5.7: Well data and wear factors.	86

LIST OF FIGURES

Figure 1.1: Wear Groove in Liner Hanger [1]	1
Figure 1.2: Casing wear vs. depth for well using NRDPPs [3]	3
Figure 2.1: The effect of the rock or metal debris [27]	
Figure 2.2: Machining wear mechanism [1]	
Figure 2.3: Machining wear debris (chips) [1]	10
Figure 2.4: Galling wear mechanism [1]	11
Figure 2.5: Galling wear debris (Flakes) [1]	12
Figure 2.6: Grinding wear mechanism [1]	
Figure 2.7: Grinding wear debris (powder) [1]	
Figure 2.8: Polishing wear mechanism [1]	13
Figure 2.9: Drill pipe rubber protector [28]	
Figure 2.10: Drill pipe model for drop section [29]	
Figure 2.11: Drill pipe model for build-up section [29]	
Figure 2.12: Snapshot of side force along drill pipe [1]	
Figure 2.13: Drill pipe tool Joint in contact with casing ID. [30]	
Figure 2.14: Drill-pipe rotation inside casing. [1]	
Figure 2.15: Casing wear penetration by rotating tool joint vs. wear time. [11]	
Figure 2.16: Casing wear penetration by rotating tool joint vs. wear time. [11]	
Figure 2.17: Casing wear volume by rotating tool joint vs. contact load. [11]	
Figure 2.18: Accumulative tripping wear volume vs. number of wear cycles [12]	
Figure 2.19: Accumulative tripping wear volume vs. number of wear cycles [12]	
Figure 2.20: Wireline wear depth vs. number of wear cycles [13]	
Figure 2.21: Wireline wear depth vs. number of wear cycles in various mud. [13]	
Figure 2.22: Crescent wear groove in casing. [1]	
Figure 2.23: Relation between wear depth and wear width. [21]	
Figure 2.24: Forces acting on the drill-string. [1]	
Figure 2.25: Casing wear rate vs. contact pressure for constant load of 3000lb. [16]	
Figure 2.26: Well path coordinate system and direction angles. [20]	
Figure 2.27: Real and Apparent Dogleg. [1]	
Figure 2.28: Drill pipe contact with casing. [38]	
Figure 2.29: Tool joint hardfacing condition. [40]	
Figure 2.30: Additional feet drilled vs. dogleg severity for varying drilling rates. [16]	
Figure 3.1: Multifinger caliper tool. [48]	
Figure 3.2: Electromagnetic casing inspection tool. [48]	
Figure 3.3: Flux leakage casing inspection tool. [46]	44
Figure 3.4: The Ultrasonic image tool assembly and transducer positions facing the	
casing wall for measurements, or facing the internal target plate for fluid properties	15
measurements. [48]	
Figure 3.5: USIT principle of measurement. [49]	
Figure 3.6: Ultrasonic image log display. [46]	
Figure 3.7: Casing wear tracks. [46]	48 51
Figure 3.8: USIT log shows wear groove in casing	
Figure 3.9: USIT log shows wear groove in casing	
Figure 3.10: Friction Force. [37]	
TIGUIC 5.11. Depuil of weat grouve in casing, [24]) /

Figure 3.12: Relation between wear depth and wear volume. [38]	58
Figure 3.13: Wear volume vs. work function. [21]	
Figure 4.1: Project page information input	64
Figure 4.2: Survey data input	65
Figure 4.3: Wellbore data input	66
Figure 4.4: Operation data	68
Figure 4.5: Tubular data	69
Figure 4.6: Preferences data	70
Figure 4.7: Wear factor	71
Figure 4.8: Worst case scenario and Trend case scenario	72
Figure 5.1: Actual wear% Vs simulated trend case wear% as a function of MD	75
Figure 5.2: Actual wear% Vs simulated worst case wear% as a function of MD	76
Figure 5.3: Actual wear% Vs Simulated trend case wear% as a function of MD	79
Figure 5.4: Actual wear% Vs simulated worst case wear% as a function of MD	80
Figure 5.5: Simulated worst case wear% Vs dogleg severity as a function of MD	82
Figure 5.6: Simulated worst case wear% Vs dogleg severity as a function of MD	83
Figure 5.7: Maximum wear case effect on casing condition Well-01	84
Figure 5.8: Maximum wear case effect on casing condition Well-02	85

NOMENCLATURES

(DLS)_{i,j,a}: Apparent dogleg severity between stations i and j, Degree /100ft

(DLS)_{i,i,r}: Real dogleg severity between stations i and j, Degree/100ft

BR: Build Rate.

 C_{wr} : Rotating wear coefficient cu.in /lb.ft C_{wt} : Tripping wear coefficient, cu.in /lb.ft C_{ww} : Wireline wear coefficient, cu.in /lb.ft

D_h: Depth of wear point, ft

DL: Dogleg.

DLS: Dogleg severity, degree /ft

D_t: Total depth of well at time of interest, ft

 d_{ti} : Tool joint diameter, in

E: Specific energy, lb_f.ft / cubic inch

 $\begin{array}{lll} EW : & East \ West \ axis. \\ F : & Contact \ force, \ lb \\ F_A : & Axial \ force, \ Ib_f \\ F_f : & Frictional \ force, \ Ib_f \end{array}$

Fpm: Flow rate, feet per minute

 F_{tj} : Normal force on the tool joint per foot, lb/ft

 $\begin{array}{lll} F_w : & Gravitational \ force \ , Ib_f \\ F_y : & Forces \ in \ y\text{-}direction \ , Ib_f \\ h : & Casing \ wear \ groove \ depth, \ in \\ HD : & Horizontal \ Displacement. \end{array}$

 $\begin{array}{lll} IRAV : & Casing \ Internal \ radius \ average \\ K : & The \ ratio \ between \ L_{i,j} \ and \ L_{act} \\ L_{act} : & Actual \ dogleg \ interval \ length, \ ft \end{array}$

L_{dp}: Drill pipe joint length, ft

 $L_{i,j}$: Measured depth from station i to station j, ft

 L_{ti} : Tool joint length, ft

MW: Mud weight

N: Rotary speed, rpm

NF_{dp}: Normal force on the drill pipe per foot, lb/ft

NRDPPs: Non rotating drill pipe protectors.

NS: North South axis.

N_t: Number of round trips per day (assumed to equal 1 for conventional bits

and 0.25 for diamond bits)

 $N_{\rm w}$: Number of wireline runs.

P: Radius of wear groove circle, in

ppg: Pound per gallon

R: Casing inner radius, in

r: Tool joint outer radius, in ROP: Rate of penetration, ft/hr RPM: revolution per minute S: Offset distance, in

Sd: Sliding distance, that drill-string or wireline travel across wear point, ft

t: Contact time, hr

T: Drill-string tension load, lb

T_a: Average tension in the drill string or wireline at the wear point, lb

THAV: Casing thickness average.in

TR: Turn rate.

TVD: True vertical depth.

 T_w : Maximum wireline tension at the surface, lb V_r : Wear volume caused by rotating, cu.in/ft

VS: Vertical section.

V_t: Wear volume caused by tripping, cu.in/ft

V_w: Wear volume caused by wireline running, cu.in/ft

W: Casing wear groove width, in

 WD_s : Buoyed weight of drill-string below wear point, lb WF: Casing wear factor for drill string rotation, E-10Psi-1

W_f: Frictional work, Ibf.in/ft

WOB: Weight on bit, lb

i, j: Difference in direction from station i to station j, degree

: Fraction of drill pipe per joint that contacts wear point (usually taken as

0.1)

: Deviation angle from vertical, degree

μ: Friction coefficient,[dimensionless]

ABSTRACT

As shallow and easily accessible oil and gas reservoirs are becoming depleted, so oil and gas industry turned its interest towards deeper and complex reservoirs. Traditional drilling methods have been less convenient for deep drilling challenges. More complex well paths and tough drilling conditions have pushed drilling technology off limits. Deep wells needs longer drill strings and large number of rotating hours, which have been found to wear out casing pipes that supports the walls of the well at dangerous rates. The use of top drive systems and the ability to back ream while rotating is now common practice, which exaggerate the problem.

Casing wear can become a critical problem threatening well safety and permanence. It can cause the abandonment of a well before reaching total depth or, in certain cases; it can lead to blowouts, lost production, and other hazardous and expensive problems.

For many years, the measure taken to deal with wear problem was the application for wear resistant materials on the drill pipes tool joints. These wear resistant materials are commonly referred to as hard-banding materials. The hard-banding materials successfully protected the drill pipes from wear but, they have been found causing rapid sever wear to the casing inner surface which increased the problem. Operators start recognizing the operational threat to the integrity of their wells and the associated economic and environmental impact, so they have start-studying casing wear issues. Pre determined laboratory wear factors have shown to correlate poorly with actual wear seen in the wells after it has been drilled.

Therefore, our study will focus on how to find a method to determine a proper wear factor from real wells that already have been drilled, by simulating casing wear based on drilling data from field and thereby back calculate the wear factor by adjusting the software wear prediction graph to fit with actual wear graph. Comparing the simulated software wear graph with actual wear graph, will produce two wear factors the average wear factor and the maximum wear factor. Study will focuses on maximum wear factor, which recommended for use in the casing design phase.

Our results shows that L80-13cr casing has much less wear resistance than P-110 casing, and wear factors are dependent upon individual wells and its wear peaks. Casing wear peaks may be unpredictable at the planning phase, which make casing wear accurate prediction very difficult process.