Effect of Ivabradine on the Infarct size and Remodeling in Patients with STEMI

Thesis

Submitted for partial fulfillment of MD degree in cardiology

By

Ahmed Ashraf Abdelsalam Eissa

(M.B.B.CH, Master Degree of Cardiology), Ain Shams University

Under the Supervision of

Professor Doctor / Sameh Mohamed Shaheen

Professor of Cardiology Faculty of Medicine Ain Shams University

Professor Doctor / Amr Adel El-sayed

Professor of Cardiology Faculty of Medicine, Ain Shams University

Professor Doctor / Yasser Gomaa Mohamed

Associate Professor of Cardiology Faculty of Medicine, Ain Shams University

Doctor / Mohamed Abdel-Kader Abdel-Raheem

Lecturer of Cardiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University

2014

Acknowledgment

First and foremost, I thank *God* for helping and guiding me in accomplishing this work.

I would like to thank *my mother and my family* for supporting me in every step till this work has been accomplished.

I would like to express my sincere gratitude to *Pro. Dr. Sameh Shaheen*, professor of cardiology, Ain Shams

University, for his great support and overwhelming kindness.

I must extend my warmest gratitude to *Prof. Dr. Amr*Adel, *Prof. Dr. Yasser Gomaa and Dr. Mohammed*Abdelkader for their great effort and faithful advice.

Also, I would like to thank *Prof. Dr. Osama Diab* for his great effort and help in the statistical analysis of this work.

Last, I would like to thank my *colleagues in cardiology department*, Ain Shams University and Mr. *Mohamed Yassin*, *technician of the nuclear lab*, for their help in collecting the study patients.

List of Contents

Title	Page
Introduction	1
Aim of the work	3
Review of literature	5
Value of Heart Rate Reduction	5
Remodeling	26
ECG Gated SPECT	35
Patients and Methods	55
Inclusion criteria	55
Exclusion criteria	56
Interpretation	57
Results	59
Discussion	119
Summary	135
Conclusion	139
Recommendation	141
References	143
Arabic summary	

List of Table

Table No.	Title	Page
1	Summed Stress Score	46
2	Cath lab and In-hospital data	62
3	Follow up data	65
4	Comparison between in hospital data and after 3 weeks	66
5	Echo and SPECT changes among study population	67
6	Risk factors of both groups	72
7	Types of re-vascularized vessels	73
8	Types of infarction	73
9	Comparison between group I & group II regarding age, HR on admission, door-door, door-balloon, peak CK & peak CK-MB	74
10	Comparing in hospital data of both groups	75
11	Comparing data after 3 weeks of both groups	76
12	Comparing the echocardiography changes of both groups	77
13	Comparing the SPECT changes of both groups	77
14	Analysis of diabetic and non diabetic subgroup	85

Table No.	Title	Page
15	Analysis of diabetic patients in Ivabradine group and BB group	86
16	Analysis of diabetic patients using Ivabradine Vs Non diabetic patients using Ivabradine	87
17	Analysis of diabetic patients using BB Vs Non diabetic patients using BB	88
18	Analysis of diabetic patients with HR > 100bpm in Ivabradine group and BB group	90
19	Subgroup analysis of patients with HR \leq 80 bpm	93
20	Subgroup analysis of patients with HR > 80 bpm	95
21	Subgroup analysis of patients with HR \leq 90 bpm	96
22	Subgroup analysis of patients with HR > 90 bpm	98
23	Subgroup analysis of patients with HR <100 bpm	100
24	Subgroup analysis of patients with HR >100 bpm	102
25	Subgroup analysis of % HR reduction	103
26	Subgroup analysis of patients with CK>1000 bpm	105
27	Subgroup analysis of patients with CK>2000 bpm	107

List of Tables 🕏

Table No.	Title	Page
28	Subgroup analysis of patients with CK>3000 bpm	109
29	Subgroup analysis of patients with EF < 50 %	111
30	Subgroup analysis of patients with EF $<$ 45 $\%$	113
31	Subgroup analysis of patients with EF $<$ 40 %	115
32	Subgroup analysis of high risk patients	117

List of Figures

Figure No.	Title	Page
1	Heart rate is a key determinant of ischemia	7
2	Structural formula of ivabradine	12
3	The electrical system of the heart	15
4	The action potential of a myocyte	16
5	Action Potential of SA node	17
6	Representation of the 4 subunits forming the f-channel	20
7	Importance of the f-channel in heart rate control by the autonomic system	22
8	Procorolan significantly reduces the diastolic depolarization phase, providing pure heart rate reduction	23
9	Diagrammatic representation of the many factors involved in the pathophysiology of ventricular remodeling	26
10	Ventricular Remodeling: Gross and Microscopic Architecture	29
11	Principle of ECG-gated acquisition. R–R interval on ECG, representing	39
12	Assessment of LV regional function by GSPECT.	44

Figure No.	Title	Page
13	Standard model showing the 17 segments of the coronary arterial territories	45
14	Comparison of LVEF between GSPECT and contrast left ventrioculography (LVG) in a patient	50
15	GSPECT shows preserved SWT of anterior wall of LV, suggesting presence of attenuation artifact rather than true infarct	52
16	Showing distribution of sex among study population	60
17	Showing distribution of risk factors among study population	60
18	Type of infraction	63
19	Type of the re-vascularized vessel	63
20	Left ventricular function by echocardiography on admission and after 3 weeks of the whole study population	68
21	End diastolic diameter (mm) by echocardiography on admission and after 3 weeks of the whole study population	
22	End systolic diameter (mm) by echocardiography on admission and after 3 weeks of the whole study population	69

Figure No.	Title	Page
23	Left ventricular function by nuclear study on admission and after 3 weeks of the whole study population	69
24	End diastolic volume (ml) by nuclear study on admission and after 3 weeks of the whole study population	70
25	End systolic volume (ESV ml) by nuclear study on admission and after 3 weeks of the whole study population	70
26	17-segment score by nuclear study on admission and after 3 weeks of the whole study population.	71
27	Significant HR reduction in group I using Ivabradine	76
28	Correlation of HR on admission and baseline EF by echocardiography	79
29	Correlation between admission of HR and EF by echocardiography after 3 weeks	79
30	SPECT analysis on admission & after 3 weeks	80
31	SPECT analysis on admission & after 3 weeks	81
32	SPECT analysis on admission & after 3 weeks	82
33	SPECT analysis on admission & after 3 weeks	83
34	Change in LV end-systolic diameter measured by echocardiography among diabetic patients with admission HR ≥100 bpm following PCI	91

List of Figures 🕏

Figure No.	Title	Page
35	Change in mean LVEF measured by SPECT among diabetic patients with admission HR ≥100 bpm following PCI	91
36	Change in median LVEF measured by SPECT among diabetic patients with admission HR >100 bpm following PCI	92

List of Abbreviations

% Percentage.

Atrial fibrillation. AF

AMP Adenosine mono phosphate.

Morbidity-mortality EvAlUation of The If **BEAUTIFUL**

> inhibitor ivabradine in patients with coronary disease and left ventric ULar

dysfunction.

CAD Coronary artery disease.

CARVIVA HF Effect of Carvedilol, Ivabradine or their

combination on exercise capacity in patients

with Heart Failure.

Creatine Kinase. CK

CLARIFY Prospective longitudinal observational

registry of patients with stable coronary

artery disease.

DLP Dyslipidemia.

DM Diabetes Mellitus.

EDD End diastolic diameter.

End diastolic diameterby echocardiography. **EDD**_e

EDV End diastolic volume.

 EDV_{Sp} End diastolic volume by SPECT.

Ejection fraction. EF

Ejection fraction by echocardiography. $\mathbf{EF_e}$

List of Abbreviations *\(\mathcal{E}*

 $\mathbf{EF_{Sp}}$ Ejection fraction by SPECT.

ESD End systolic diameter.

ESD_e End systolic diameter by echocardiography.

ESV End systolic volume.

 ESV_{Sp} End systolic volume by SPECT.

GFR Glomerular filtration rate.

HR Heart rate.

HTN Hypertension.

ICD Intracardiac defibrillator.

LAD Left anterior descending.

LCx Left circumflex.

LV left ventricle.

PCI Percutaneous coronary intervention.

PPM Permenant pacemaker.

RCA Right coronary artery.

SHIFT Systolic heart failure treatment with If

inhibitor ivabradine trial

SPECT Single-photon emission computed

tomography.

SRS Summed rest score.

SSS Sick sinus syndrome.

Vs Versus.

Introduction

Introduction

Coronary artery disease remains the leading cause of mortality worldwide. Despite advances in primary and secondary prevention, including revascularization, the condition continues to impose a major burden upon public health^(1,2).

Increase in heart rate induced by physical or emotional effort is well known as an important determinant of ischemia. Ischemia results when myocardial perfusion is insufficient to meet metabolic demand. The role of increased heart rate is well established in the patho- physiology of myocardial ischemia, as it influences myocardial oxygen demand and supply through the modification of diastolic time during coronary filling⁽³⁾.

Ivabradine is a new heart rate reducing agent, which has demonstrated anti-anginal and anti-ischemic properties in patients with stable angina. In an atherosclerosis model, selective heart rate reduction with ivabradine has been shown to decrease markers of vascular oxidative stress and to decrease atherosclerotic plaque formation ⁽⁴⁾.

It is hypothesized that addition of ivabradine to standard medical therapy would have a beneficial effect in decreasing the infarct size through the heart rate reduction in acute coronary syndrome specially in patients presented with STEMI.

Aim of the Work