Tissue Doppler Assessment of Myocardial Dysfunction in Bronchial Asthma

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Ashraf Abdallah Shafiek

MB., Bch Ain Shams University

Under Supervision of

Prof. Dr. Alyaa Amal Kotby

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Ola Abd El-Aziz Elmasry

Assistant Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Waleed Mohamed El-Guindy

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2011 تقييم الخلل في وظائف عضلة القلب باستخدام دوبلر الأنسجة في مرضى الربو الشعبي

رسالة
مقدمة من
الطبيب/ أشرف عبد الله شفيق
الطبيب الشرف عبد الله شفيق

تحت إشراف

الأستاذة الدكتورة/ علياء آمال قطبي أستاذة الدكتورة/ علياء آمال قطبي أستاذ طب الأطفال كلية الطب جامعة عين شمس

الدكتورة/ علا عبد العزيز المصري أستاذ مساعد طب الأطفال كلية الطب جامعة عين شمس

> الدكتور/ وليد محمد الجندي مدرس طب الأطفال كلية الطب جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس

Summary

Bronchial asthma is a chronic inflammatory disease of the lower respiratory tract characterized by non specific bronchial hyper-responsiveness, which may lead to variable reversible air flow obstruction in affected patients (Beeh and Buhl, 2001).

Severe bronchial asthma profoundly alters the cardiovascular status and function (Spyros et al., *2002).* Diastolic dysfunction of the right ventricle is the earliest hemodynamic change in bronchial asthma. Left ventricular diastolic dysfunction was also observed (Chicherina bronchial asthma in severe Shipitsyna, 2003). This may be due to bronchial obstruction, hypoxemia, dilation, hypertrophy and altered diastolic filling of the right ventricle. Left ventricular diastolic filling improved with attenuation of the exacerbation of bronchial asthma (Bobrov et al., *2003).*

This study included 63 children 33 males and 30 females. Their age ranged from 6 years to 16 years they were classified into two groups:

Group 1 (cases): Included 48 patients with bronchial asthma as cases.

Contents

Subjects	Page No.
List of tables	ii
List of figures	v
List of Abbreviations	vii
Introduction	1
Aim of the Work	3
Review of literature	
Bronchial asthma	4
Echocardiography	58
Tissue Doppler Imaging	66
Strain and Strain Rate Imaging	83
Speckle track echocardiography	93
Myocardial dysfunction in bronchial asthma	103
Patients & methods	110
Results	117
Discussion	139
Summary &conclusion	150
Recommendation	155
References	156
Arabic Summary	

List of Tables

Table No.	Title	Page
(1)	Differential diagnosis of childhood asthma	40
(2)	Classification of asthma severity by clinical features before treatment.	43
(3)	Asthma medication by category	48
(4)	Differences and uses of pulsed wave Doppler and continuous wave Doppler.	62
(5)	Spectral Doppler echocardiography artifacts.	63
(6)	Color Doppler artifacts	65
(7)	Problems and solutions for tissue-velocity based strain rate imaging.	88
(8)	Comparison between both groups as regard age and sex	117
(9)	Distribution of the studied cases as regard grades of asthma	118
(10)	Relation between grades of asthma and type of treatment	119
(11)	(11) Distribution of the studied cases as regard controller medication	
(12)	Radiological findings of the studied cases	121
(13)	ECG findings of the studied cases	122
(14)	Comparison between cases and controls as regard pulmonary function tests	123
(15)	Comparison between cases and controls as regard echocardiographic findings (m-mode)	124
(16)	Comparison between mild, moderate and severe asthma as regard echocardiographic findings	125

Table No.	Title	Page
(17)	Comparison between cases and controls as regard EF using modified Simpson's and speckle track echocardiography and systolic pulmonary	
	pressure(SPP)	127
(18)	Correlation between echocardiographic parameters and pulmonary functions among cases	128
(19)	Correlation between echocardiographic parameters and pulmonary functions among controls	131
(20)	Correlation between echocardiographic parameters and pulmonary functions tests among cases	132
(21)	Correlation between echocardiographic parameters and pulmonary functions tests among controls	135
(22)	Relation between pulmonary functions tests and ECG findings among cases	136
(23)	Relation between echocardiographic results and radiological findings among cases	137
(24)	Relation between echocardiographic results and radiological findings among cases	138

List of figures

Figure No.	Title	Page
(1)	Asthma Inflammation: Cells and Mediators	7
(2)	Risk factors in Bronchial Asthma	15
(3)	An example of a normal myocardial pulsed Doppler velocity profile	70
(4)	The tissue Doppler imaging pattern of the left ventricular mitral annulus	73
(5)	Illustrating concept of strain and strain rate (SR).	83
(6)	Diagram showing how to obtain strain imaging	86
(7)	Acoustic speckle tracking in 2-dimensional strain	94
(8)	Velocity estimation by speckle track echocardiography	95
(9)	Strain curves and numeric values.	97
(10)	Shows the distribution of studied cases as regard grades of asthma	118
(11)	Shows the distribution of the studied cases as regard Controller medication	120
(12)	Shows the distribution of the studied cases as regard radiological finding	121
(13)	Shows the distribution of the studied cases as regard ECG findings	122
(14)	Shows a statistically significant negative correlation between FEV1/FVC and lateral wall	129
(15)	Shows a statistically significant negative correlation between FEV1/FVC and sepal wall	129
(16)	Shows a statistically significant negative correlation between FEV1/FVC and systolic pulmonary pressure	130

Figure No.	Title	Page
(17)	Shows a statistically significant negative correlation between FEV1/FVC and AO size	133
(18)	Shows a statistically significant negative correlation between FEV1/FVC and LA size	133
(19)	Shows a statistically significant positive correlation between FEV1/FVC and ESV	134

List of Abbreviations

Abbrev.	Full term
2D	Two dimentional
ACC	American College of Cardiology
AHA	American Heart Association
Am	Late myocardial diastolic wave
Ao	Aorta
Awave	A second diastolic wave (late diastole)
BA	Bronchial asthma
C	The velocity of sound in human tissue at 37°C.
CFD	Color flow Doppler
CO	Cardiac output
CTDI	Color Tissue Doppler Imaging
CW	Continous wave
E wave	Pulsed wave Doppler mitral inflow early diastolic wave
Ea wave	Tissue Doppler Imaging early annular diastolic wave
ECG ECG	Electrocardiogram
EDV	End diastolic volume
EF .	Ejection fraction
Em	Ecoho early myocardial diastolic wave
ESC	European Society of Cardiology
ESR	Erythrocyte Sedmination Rate
ESV	End systolic volume
Ewave	Early diastolic velocity of relaxation
Fd	The observed Doppler frequency shift.
FEV1	Forced expiratory volume in 1 second
Fo	The transmitted frequency
FVC	Forced vital capacity
GAS	Group A Streptococcus
GM-CSF	Granulocyte- mcrophage colony stimulating factor

Abbrev.	Full term
IgE	Immunogloblin E
IL- 4	Interlukin-4
IL-11	Interlukin-11
IL-13	Interlukin-13
IL-1B	Interleukin 1 B
IL-5	Interlukin-5
IL-8	Interlukin-8
IL-9	Interlukin-9
IVCT	Isovolumetric contraction time
IVRT	Isovolumic relaxation time
IVsd	Interventricular septal thickness in diastole
IVSS	Interventricular septal thickness in systole
K-T CELLS	Natural killer cells tumer
LA	Left atrial
LABAS	Long acting B2 agonists
LPWd	Left posterior wall thickness in diastole
LPWS	Left posterior wall thickness in systole
LV	Left ventricle
LVIDd	Left ventricular internal diameter in diastole
LVIDs	Left ventricular internal diameter in systole
MCP-1	Macrophage chemottactant
MDC	Macrophages derived chemokines
MIP-1&	Macrophage inhibiting protein1-& IL-6
MM	M mode
MR	Mitral Regurgitation
MRI	Magnetic Resonance Imaging
NYHA	New York Heart Association
0	The intercept angle between the ultrasound beam and the blood flow.
PEF	Peak expiratory flow
PPD	Purified protein derivative
PRF	Pulse repetition frequency

Abbrev.	Full term
PW	Pulsed wave
PW TDI	Pulsed Wave Tissue Doppler Imaging
RA	Right Atrial
RAAS	Renin-angiotensin-aldosterone System
RBC	Red blood corpuscle
RIVGT	Regional iso-volumic contraction
RIVRT	Regional iso-volumic relaxation time
RSV	Respiratory syncitial virus
RV	Right ventricular
S wave	Tissue Doppler Imaging systolic wave
S	Systole
S1	1 st heart sound
S2	2 nd heart sound
Sa wave	Tissue Doppler annular systolic wave
Sm	Systolic myocardial
SPP	Systolic pulmonary pressure
SPSS	Statistical program for social science version 12
SR	Strain Rate
TARC	Thymus and activation-regulated chemokines
TDE	Tissue doppler cardiography
TDI	Tissue Doppler Imaging
TEE	Transoesophageal Echocardiography
TH1	T helper 1 lymphocyte
TH2	T Helper 2 lymphocyte
TNF	Tumour necrosis factor
TR	Tricuspid Regurgitation
TVI	Tissue velocity imaging
US	Ultrasound
\mathbf{V}	Blood flow velocity
VEGF	Vascular endothial growth factor
ε	Strain

Introduction

Bronchial asthma is a chronic inflammatory disease of the lower respiratory tract characterized by non specific bronchial hyper-responsiveness, which may lead to variable reversible air flow obstruction in affected patients (Beeh and Buhl, 2001).

Severe bronchial asthma profoundly alters the cardiovascular status and function (Spyros et al., 2002). Diastolic dysfunction of the right ventricle is the earliest hemodynamic change in bronchial asthma. Left ventricular diastolic dysfunction was also observed in severe bronchial asthma (Chicherina and Shipitsyna, 2003). This may be due to bronchial obstruction, hypoxemia, dilatation, hypertrophy and altered diastolic filling of the right ventricle. Left ventricular diastolic filling improved with attenuation of the exacerbation of bronchial asthma (Bobrov et al., 2003).

Spyros et al. (2002) reported that rapid right ventricular filling in inspiration results in shifting of the interventricular septum toward the left ventricle which may lead to left ventricular diastolic dysfunction and incomplete filling. The large negative intrathoracic pressure generated during inspiration

may also increase left ventricular afterload by impairing systolic emptying.

Echocardiography is the most commonly used tool to assess cardiac function (Aurigemma et al., 2001) and offers a number of advantages. It is not only non invasive but provides exquisite images of the beating and often tiny heart. This technology is especially beneficial for the pediatric population because it does not cause discomfort and eliminates the need for sedation (Fratt, 2003).

Tissue Doppler imaging is an emerging ultrasound technology that measures cardiac function without the invasive and painful elements of cardiac catheterization and biopsy (*Darek and Fyfe, 2003*). It is a new objective method that accurately quantifies myocardial tissue velocities, deformation, time intervals and left ventricular filling pressure (*Shirley et al., 2006*).

Tissue Doppler imaging measures the velocity of the cardiac muscle itself, rather than that of the blood and is a direct measurement of the heart function. It is easy to perform and available on most current echocardiography machines. More importantly it is not affected by factors such as anemia, fluid over load and valve leakage, all of which can cause inaccurate measurements with conventional blood flow Doppler (*Darek and Fyfe, 2003*).

Aim of the Work

The aim of this prospective study was to evaluate global cardiac function in children with bronchial asthma using M mode, two dimensional echocardiography and tissue doppler using speckle track echocardiography of asthmatic children and correlate the results with the severity of the disease.