Radiation exposure in cryoballoon ablation compared to catheter ablation with 3D-electroanatomic mapping in AF patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By Hisham Kamal El Din Ali

M.B., B.Ch, Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Said AbdelHafeez Khalid

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Ahmed Nabil Ali

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

Ass. Prof. Wael Ali El Khouly

Ass. Prof. Medical Protection of Radiation Effects Egyptian Nuclear and Radiological Energy Authority (ENREA)

> Faculty of Medicine Ain Shams University 2017

Abstract

Also, our results showed statistically significant higher patients' peak skin doses at right scapular area and cryoballoon ablation group compared to 3D mapping ablation group.

Furthermore, our findings showed that there was no statistically significant correlation between peak skin doses and fluoro-time, but there was statistically significant correlation between peak skin dose and usage of high frame rate and also with high DAP (dose area product).

These findings were compatible with most of the recent studies in the same field.

Keywords: Effective Dose - Electro-Anatomic Mapping - Fluoroscopy Guided Procedure - Intra Cardiac Echocardiography

التعرض للإشعاع في عمليات الكي ببالون التبريد مقارنة بعمليات الكي بقسطرة نظام الرسم التشريحي ثلاثي الابعاد لمرضي الذبذبة الاذينية

□ أُطروحة

توطئة للحصول على درجة الماجستيرفي أمراض القلب

□مقرمة من

هشام كمال الدين علي

ل ابكالوريوس طب و جراحة كلية الطب - جامعة عين شمس

تحت (الإشراف

أ. د/ سعيد عبد الحفيظ خالد

اً استاذ أمراض القلب كالمية الطب - جامعة عين شمس

د/ أحمد نبيل على \Box

مدرس أمراض القلب \Box كلية الطب - جامعة عين شمس

أ.م. د/ وائل على الخولي

استاذ مساعد الوقاية الطبية للتأثيرات الإشعاعية \Box هيئة الرقابة النووية والإشعاعية

كلية (لطب جامعة عين شمس

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Said**Abdel Hafeez Khalid, Professor of Cardiology, Faculty of Medicine – Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Mabil Ali,** Lecturer of Cardiology, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Ass. Prof. Wael Ali El Khouly, Ass. Prof. Medical Protection of Radiation Effects, Egyptian Nuclear and Radiological Energy Authority (ENREA), for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hisham Kamal El Din Ali

List of Contents

Title Page No.
List of Tablesi
List of Figuresiii
List of Abbreviationsviii
Introduction1
Aim of the Work4
Review of Literature
■ Electro-Physiologic Basis of Catheter Ablation of Atrial Fibrillation
■ New Strategies, New Techniques and future prospective of AF Ablation
• Cryoballoon Ablation as an Alternative to RF Ablation 37
• Radiation Protection in Interventional Cardiology 57
 Precautions and Efforts to Minimize Radiation Exposure
Subjects and Methods
Results
Discussion
Summary
Conclusion 142
Recommendations
Study limitation
Master Table
References
Arabic Summary

List of Tables

Table No.	Title Pag	e No.
Table (1):	Tissue reaction from radiation delivery to the skin at different doses	
Table (2):	shows age, gender and risk factors	98
Table (3):	Drug history	99
Table (4):	shows echocardiographic data before ablation	
Table (5):	shows procedure data	101
Table (6):	shows effect of additional atrial flutter ablation on procedure time and fluoro-time.	
Table (7):	shows medical staff doses	103
Table (8):	shows patient skin dose	104
Table (9):	shows comparison between 3D mapping ablation group and cryoballoon ablation group regarding patient risk factors	ì
Table (10):	shows comparison between 3D mapping ablation group and cryoballoon ablation group regarding persistent type of AF	ì
Table (11):	shows comparison between 3D mapping ablation group and cryoballoon ablation group regarding drugs history	ì
Table (12):	shows comparison between 3D mapping ablation group and cryoballoon ablation group regarding Pre-procedure Echofinding))

List of Cables (Cont...)

Table No.	Title	Page No.
Table (13):	shows comparison between 3D mablation group and cryoballoon a group regarding procedure time (fluoro-time (mins), frame per section (FPS) used and dose area product (figure 1).	blation mins), second
Table (14):	shows comparison between 3D ma ablation group and cryoballoon a group regarding medical staff doses .	blation
Table (15):	Comparison between 3D mapping a group and cryoballoon ablation regarding patient skin dose at Paback (at both scapular regions and ve region), also a comparison between peaks	group atients' rtebral a their
Table (16):	shows correlation of peak skin dos fluoro-time , FPS and DAP	
Table (17):	Linear regression analysis for affecting peak skin dose	
Table (18):	Correlation of peak skin dose with f time at different FPS (frames per s separately	second)

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Schematic of Common Lesion Employed in AF Ablation	
Figure (2):	Showing the recordings from the ci multipolar mapping catheter placed pulmonary vein are shown during abl	l in a
Figure (3):	Ittustration demonstrating operation Biosense CARTO electroanatomic ma system	apping
Figure (4):	Three-dimensional electro-anatomap by CARTO	
Figure (5):	Left atrial electroanatomic map gene by Ensite NavX	
Figure (6):	Image integration technology combine electroanatomical reconstruction of that rium	he left
Figure (7):	Three-dimensional electroanatomical of the left atrium with the circumfer ablation lesion points	rential
Figure (8):	HeartLight® (CardioFocus Marlborough, MA, USA) balloon sh perpendicular projection of 30° thera beam of light	nowing peutic
Figure (9):	Representation of the complex fraction atrial electrograms (CFAE) using NavX automated software	onated Ensite
Figure (10):	Comparison of radiofrequency (RF cryothermal (Cryo) ablation lesions cryoth a 4 mm tip catheter	reated
Figure (11):	Histology of cryoenergy and radiofred (RF) lesions	luency

Fig. No.	Title	Page No.
Figure (12):	A: In Arctic Front Cryoballoon, the concentrated cooling zone occurs near equator of the balloon. B: Arctic Advance Cryoballoon with EvenCool Technology is designed to allow flexibility in balloon positioning ableat PVs.	ar the Front Cryo more te the
Figure (13):	28 mm double lumen cryoballoon ab catheter (Arctic Front, Cryocath) inflation in the freeze mode	after
Figure (14):	A, Fluoroscopic image of an abballoon inflated in the left su pulmonary vein. B, Intracardiac recording obtained from a pulmonary vein with circular catheter before ablation Intracardiac recordings obtained from circular catheter after balloon-ablation	perior rdings th the n. C, m the based
Figure (15):	Graphical representation of data in T showing overlap in the skin effects both dose and time	with
Figure (16):	Shows patient presented six weeks with a painful, itchy rash on his bac square pattern	k in a
Figure (17):	A) 3 weeks: Area of sharply demanderythema. B) 5 months: Tissue necros 6½ months: Deep ulceration with export of the bone. D) Following surgical flap	sis. C) oosure

Fig. No.	Title Page	No.
Figure (18):	Slit lamp shows posterior sub-capsular cataract in the eye of an interventionist using an old x-ray system and high scatter radiation from improper working conditions	67
Figure (19):	Protective measures in cath-lab	82
Figure (20):	Techniques to minimize exposure to patient and operators	82
Figure (21):	Cryoconsole in cath lab	96
Figure (22):	Patient's gender.	99
Figure (23):	Shows hypertension between two groups	106
Figure (24):	Shows higher LAD with 3D mapping group.	108
Figure (25):	Shows statistically significant longer procedure time with 3D mapping ablation group (p-value = 0.005)	
Figure (26):	Shows no statistically significant difference between 3D mapping ablation group and cryoballoon ablation group regarding fluoro-time (p- value = 0.104)	111
Figure (27):	Shows higher usages of high Frame Per Second (FPS) with cryoballoon ablation group, but there was no statistically significant association (p-value = 0.063)	
Figure (28):	Shows higher DAP with cryoballoon ablation group, but no statistically significant difference between 3D mapping ablation group and cryoballoon ablation group regarding Dose Area Product (DAP) (p- value = 0.727).	

Fig. No.	Title	Page No.
Figure (29):	Shows that first operator doses higher in cryoballoon ablation group 3D mapping ablation group	than
Figure (30):	Shows there was statistically signs association between skin doses at scapular area and Cryoballoon at group	right olation
Figure (31):	Correlation between peak skin dos	e and
Figure (32):	Correlation between peak skin dos DAP	
Figure (33):	Cryoballoon in the left superior pulm vein in patient no. (3) in cryoballoon g	•
Figure (34):	Inrtra-cardiac electrogram shows superior pulmonary vein potential same patient.	in the
Figure (35):	Inrtra-cardiac electrogram shows de left superior pulmonary vein potent the same patient.	tial in
Figure (36):	Inrtra-cardiac electrogram shows is left superior pulmonary vein in the patient.	olated same
Figure (37):	Inrtra-cardiac electrogram shows inferior pulmonary vein potential is same patient.	left in the
Figure (38):	Inrtra-cardiac electrogram shows de left inferior pulmonary vein potent the same patient.	lay in ial in
Figure (39):	Inrtra-cardiac electrogram shows a application in left inferior pulmonar potential in the same patient	second y vein

Fig. No.	Title	Page No.
Figure (40):	Inrtra-cardiac electrogram shows delay second application in left in pulmonary vein potential in the patient.	nferior same
Figure (41):	Inrtra-cardiac electrogram shows is left inferior pulmonary vein in the patient.	same
Figure (42):	3D electro-anatomical mapping CARTO system shows ablation linisolation of the right pulmonary via patient no. (16).	ne for ens in
Figure (43):	3D electro-anatomical mapping CARTO system shows ablation lin isolation of the right and left pulm viens in the same patient	es for nonary

List of Abbreviations

Abb.	Full term
<i>AAD</i>	Anti-Arrhythmic Drugs
	Atrial Fibrillation
ALARA	As Low As Reasonably Achievable
<i>CA</i>	Catheter Ablation
<i>CB</i>	Cryoballoon
<i>CBA</i>	Cryo- Balloon Ablation
<i>CF</i>	Contact Force
<i>CFAE</i>	Complex Fractionated Atrial Electrogram
	Coronary Sinus
<i>DAP</i>	Dose Area Product
<i>E</i>	Effective Dose
<i>EAMS</i>	Electro-Anatomic Mapping
	Fluoroscopy Guided Procedure
Flouro Time	Flouroscopy Time
<i>FPS</i>	Frame Per Second
<i>ICE</i>	Intra Cardiac Echocardiography
<i>ICRP</i>	International Commission of Radiation
	Protection
<i>KAP</i>	Kerma Air Product
<i>LA</i>	Left Atrium
LV	Left Ventricle
mGy	Mille Gray
<i>MSv</i>	Micro Sievert
mSv	Mille Sievert
<i>NCRP</i>	National Commission of Radiation Protection
<i>PNP</i>	Phrenic Nerve Palsy
PVI	Pulmonary Vein Isolation
PVs	Pulmonary Veins