Effect of Ceramic translucency and luting cement shade on the color masking ability of two recent esthetic veneer materials

Thesis

Submitted for the partial fulfilment of the Master Degree requirements in Crown and Bridge Department,

Faculty of Dentistry, Ain Shams University

By

Bassem Sameh Mohamed Kandil

B.D.S

Faculty of Dentistry, Ain Shams University, 2011

Supervisors

Dr. Amina Mohamed Hamdy

Professor of Fixed Prosthodontics

Faculty of Dentistry, Ain Shams University

Dr. Ahmed Khaled Abu ELfadl

Lecturer of Fixed Prosthodontics
Faculty of Dentistry, Ain Shams University

Contents

LIST OF TABLES	I
LIST OF FIGURES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF THE PROBLEM	29
AIM OF THE STUDY	30
MATERIALS AND METHODS	31
RESULTS	55
DISCUSSION	70
SUMMARY	79
CONCLUSION	84
REFERENCES	85
APARIC SI IMMARY	

List of tables

Table 1: Materials used in the study	31
Table 2: Composition of Vita Enamic	32
Table 3: Technical data of Vita Enamic blocks	32
Table 4: Composition of Vita Suprinity	33
Table 5: Technical data of Vita Suprinity	33
Table 6: Experimental factorial design	38
Table 7: Mean and standard deviation of ΔE before cementation	55
Table 8: Two way ANOVA showing effect of material and ceramic transforms on ΔE before cementation	=
Table 9: Effect of material on ΔE	56
Table 10: Effect of ceramic translucency on the ΔE	57
Table 11: Effect of material and ceramic translucency on ΔE	58
Table 12: Two way ANOVA showing effect of material, ceramic transluction cement shade on ΔE after cementation	-
Table 13: Mean and standard deviation of $\varDelta E$ from A1 after cementation	61
Table 14: Effect of material on ΔE from A1 after cementation	62
Table 15: Effect of ceramic translucency on ΔE from A1 after cementati	on 63
Table 16: Effect of cement shade on ΔE from A1 after cementation	64
Table 17: Effect of ceramic material and translucency on ΔE from $A1$ as cementation	
Table 18: Effect of ceramic material and cement shade on ΔE from A1 a cementation	-
Table 19: Effect of ceramic translucency and cement shade on ΔE from cementation	=

Table 20: Effect of ceramic material,	translucency and cement shade on ΔE from	m
A1 after cementation		8

List of figures

Fig 1: A diagram showing the Munsell color system 5
Fig 2: A diagram showing the CIE Lab color space
Fig 3: Vita Enamic blocks
Fig 4: Vita Suprinity blocks
Fig 5: 3M TM ESPE TM RelyX Veneer TM Resin Cement
Fig 6: 3M TM ESPE TM Filtek TM Z25035
Fig7: DentoBond Itena Hfl acid etch
Fig 8: DentoBond Itena silane coupling agent36
Fig 9: Isomet saw 400039
Fig 10: Isomet saw cutting Vita Enamic block40
Fig 11: digital calliper verifying specimens thicknesses
Fig 12: Ivoclar programmat P300 furnance41
Fig 13: cut specimens42
Fig 14: Vita Enamic technical wheel Polishing Instruments
Fig 15: dental surveyor with a straight hand piece attached43
Fig 16: polished Vita Suprinity specimen
Fig 17: mould for composite
Fig 18: composite disc shade C345
Fig 19: Vita easy shade advance 4.046
Fig 20: Color measurement with Vita Easyshade Advance 4.0 on a white background

Fig 21: Color measurement with Vita Easyshade Advance 4.0 on a black background
Fig 22: surface after etching and air drying48
Fig23: Application of silane coupling agent49
Fig 24: surface after application of silane49
Fig 25: ring shaped stopper 4.6mm in thickness50
Fig 26: light curing the specimens through the glass slap to unify the cement thickness
Fig 27: Vita Suprinity disc cemented to composite substrate using white opaque resin cement51
Fig 28: measuring ΔE from A1 after cementation53
Fig 29: Vita Easyshade readings53
Fig 30: Bar chart representing effect of Effect of material on ΔE before cementation
Fig 31: Bar chart representing effect of Effect of ceramic translucency on ΔE before cementation
Fig 32: Bar chart representing Effect of material and ceramic translucency on ΔE
Fig 33: Bar chart representing effect of Effect of material on ΔE from A1 after cementation
Fig 34: Bar chart representing effect of Effect of ceramic translucency on ΔE from A1 after cementation
Fig 35: Bar chart representing effect of Effect of cement shade on ΔE from A1 after cementation
Fig 36: Bar chart representing effect of ceramic material and translucency on ΔE from A1 after cementation65
Fig 37: Bar chart representing effect of ceramic material and cement shade on ΔE from A1 after cementation
Fig 38: Bar chart representing effect of ceramic translucency and cement shade on ΔE from A1 after cementation

Fig 39: Bar chart representing effect of ceramic material, translucency and	cement
shade on ΔE from A1 after cementation	69

Introduction

Throughout the years dentistry has gone through numerous developments in knowledge, techniques and technology. Among many of the more recent challenges for dentists is to achieve the best esthetic restorations, so it is important for restorations to reproduce not only the color but also the translucency of the natural tooth. Color is important because there should be a substantially indistinguishable shade difference between a restoration and its surrounding teeth. The translucency of a restorative material provides an added "lifelike" vitality and a natural appearance to the completed restoration.⁽¹⁾

The patient's need for esthetically successful treatments especially in anterior teeth is always growing. Accordingly many treatment options have been proposed.

Ceramic laminate veneers have been introduced as one of the best treatment choices, they allow adequate reflection and transmission of light, they exhibit good mechanical strength and they are biocompatible.⁽²⁾

The difficulty in assessing the color of ceramic laminate veneers has been attributed to the numerous variables involved. The supporting tooth structure or esthetic restorative foundation material provides the primary source for restoration color. This color is then influenced by the thickness and translucency of the final veneer restoration and the cement shade.⁽³⁾

An essential requirement of all ceramic restoration is its masking ability, the absence of which will allow the unacceptable display of a discolored tooth or metal post beneath such a translucent restoration. The masking ability of an all-ceramic restoration can be determined by measuring the color difference (ΔE^*) between a uniform thickness material when it is placed over black and white backgrounds.⁽⁴⁾

Recently new dental ceramic materials were produced with different combinations of microstructures in order to achieve best properties, among them are Vita Enamic and Vita Suprinity.

Review of Literature

1) Color

Color is a complex psychobiophisycal phenomenon resulting from the behavior of light through its wavelengths to the human eye. Color is not a property of the object, but of the light that enters our eyes from it.⁽⁵⁾ Therefore, the real factor responsible for visual perception of color is the light. Without this, we can only see dark, or black.⁽⁶⁾

Light is an electromagnetic wave. Electromagnetic waves can be decomposed into multiple wavelengths, giving rise to a broad spectrum from radio waves (with wavelengths in kilometers) to the waves of cosmic rays (wavelengths less than 10 -13m).⁽⁷⁾ The region of light that reaches our eyes is called visible light. It includes the range of 400 to 700nm, and all the colors we know are within this range. The color we perceive is a mixture of various wavelengths.⁽⁶⁾

Our eyes have two kinds of light-sensitive cells: rods, which are responsible for defining the shape of objects and night vision, and cones which are located in the central area and are responsible for daytime vision, identification and differentiation of colors.⁽⁸⁾

Perception of color involves the participation of three factors that can effectively exist.⁽⁸⁾

Object to be observed: The object being viewed may have different physical behaviors in relation to the incident light. If an object is transparent, it acts as an absorbing environment by allowing light to pass through it (light transmission) and allowing us to see through it.

If an object is translucent, some light passes through the object and part is reflected, allowing our perceptions regarding the color of that object. If the object is opaque, the reflection of light occurs in a diffuse way, which is responsible for the colorimetric awareness of our eyes.⁽⁹⁾

Likewise, if the object absorbs all incident light, there is no reflection, and then we will see a dark color or black. If the object completely reflects the incident light, our vision will identify a white object. However, if part of the light energy is reflected and part is absorbed, the display is a colored object.⁽⁸⁾

Observer: The observation of an object can be in a visual or an instrumental way. In a visual analysis, the perception of color is a subjective process and the interpretation depends on the observer's visual individuality. If the observer is an individual trained in the analysis of color, they can identify small differences in color. Changes in color perception may occur based on age, duration of exposure of the eye, fatigue or illness related to color, such as color blindness.⁽¹⁰⁾ In instrumental analysis, colorimetric instruments objectively observe and record color.

Light source or illuminant: The illuminant may be a natural or artificial light source, which, according to its origin, can change the perceived color of an object. For example, a white sheet of paper may seem bluer under fluorescent light and more yellowish under a light bulb, in

comparison to its original color in the presence of daylight. This phenomenon is known as metamerism.⁽⁹⁾

Color parameters

In 1936, Munsell described the three dimensions of color to opaque objects: hue, chroma and value. This language became known worldwide; therefore, it became important to understand the color three-dimensional concept to perform visual and instrumental analysis. (fig1)

Hue: It corresponds to the wavelength of light reflected by the objects.

Value or light intensity: the property which is distinguished by the lightness or darkness of a color.

Chroma or saturation: indicates the purity of the color, quantifying its saturation. The lighter a color is, the lower its saturation. Moreover, saturation increases as the object is darker. For example, red is a saturated hue, while pink is the same hue, but less saturated.⁽¹¹⁾

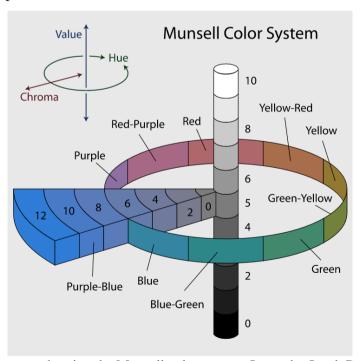


Fig. 1: A diagram showing the Munsell color system. Image by Jacob Rus, 2007.

To improve the precision in color communication of an object, the International Commission of I'Eclairage (CIE) has developed some methods to express the spectral curves in a numerical form. The method used in dentistry is the uniform color space, known as CIEL*a*b*.

Here L* indicates the lightness coordinate of the object, with values from 0 (absolute black) to 100 (absolute white). The values a^* and b^* indicates the chromaticity coordinates, showing the three-dimensional position of the object in the color space and its direction. When the coordinate a^* is positive $(+a^*)$, the object color tends to red. When this coordinate is negative $(-a^*)$, the trend is green. The coordinate b^* indicates the direction to yellow $(+b^*)$ or blue $(-b^*)$. (fig2)

This System is widely used in dental research and is useful for calculating color differences, but not amenable to easy color communication. For color communication, the HSV (hue, saturation, value) system is most commonly used. (13)

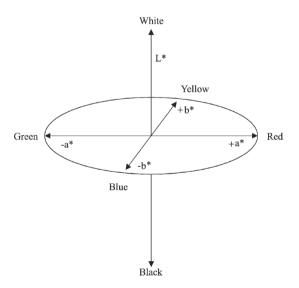


Fig. 2: A diagram showing the CIE Lab color space. (8)

The color difference (ΔE) between 2 objects, or in the same object before and after it is subjected to particular conditions, can be determined by comparing the differences between the respective coordinate values for each object or situation. The color difference value (ΔE) represents the numerical distance between L*a*b* coordinates of 2 colors.⁽¹⁴⁾

The magnitude of this difference can be obtained by the following equation:⁽²⁾

$$\Delta E = ((\Delta L *)^2 + (\Delta a *)^2 + (\Delta b *)^2)^{1/2}$$

Where:

$$\Delta L^* = L^*1 - L^*2$$

$$\Delta a^* = a^*1 - a^*2$$

$$\Delta b^* = b^*1 - b^*2$$

Numerous studies have attempted to determine the degree of color difference between restoration and target shade that is clinically acceptable. According to Ozturk et al⁽¹⁴⁾ the clinically acceptable limit of the color difference value is considered 3.7.

Douglas and Steinhauer in 2009⁽¹⁵⁾found that mean ΔE values below 3.0 were considered "clinically imperceptible", ΔE values between 3.0 and 5.0 were considered "clinically acceptable" and ΔE values above 5.0 were considered "clinically unacceptable".