Biochemical Study On Stem Cells Isolated From Patients With Hepatocellular Carcinoma (HCC)

Thesis

Submitted for Partial Fulfillment of Ph.D. degree in Cancer Biology (Medical Biochemistry & Molecular Biology)

By

Amany Yahia Abdel-Hamid

M.Sc. Biochemistry 2005-Faculty of Science
Ain Shams University

Under supervision of

Prof. Dr. Motawa E. El Husseini

Dr. Sherif B. El Din Zaid

Prof. of Medical Biochemistry

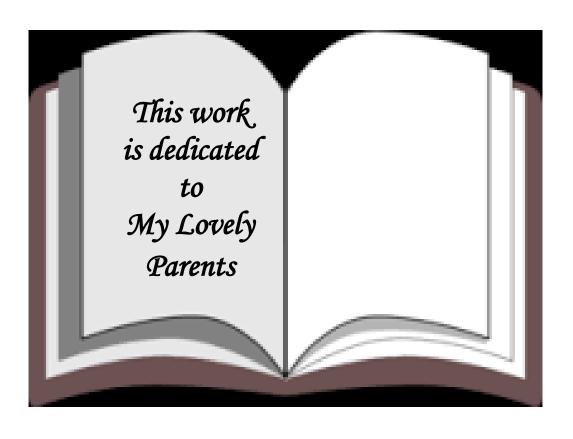
Cancer Biology Department

National Cancer Institute

Cairo University

Assistant prof. of Surgical Oncology,
Surgery Department
National Cancer Institute
Cairo University

Dr. Abeer M. EI-Sayed


Assistant Prof. of Pathology
Pathology Department
National Cancer Institute
Cairo University

Cancer Biology Department
National Cancer Institute
Cairo University
2017

بسم الله الرحمن الرحيم

الناملذ لا عاناحس المالة" عن المناب الناملذ الد عال عن المناب المناب العليم ال

"سورة البقرة – آية 32"

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to ALLAH AZZA WA JAL, the most Merciful.

Second, I am greatly honored to express my sincere gratitude, deepest appreciation to **Prof. Dr. Motawa E. El Houseini** (Prof. of Medical Biochemistry, Cancer Biology Department, National Cancer Institute) for suggesting the research proposal and designing the work plan.

I would like to express my deepest gratitude and appreciation to **Dr. Sherif B. El Din Zaid** (Assistant Prof. of Surgical Oncology, Surgery Department, National Cancer Institute) and **Dr. Abeer M. El-Sayed** (Assistant Prof. of Pathology, Pathology Department, National Cancer Institute) for their help, time, guidance and kind support throughout the work.

I would like to express my deepest gratitude to **Prof. Dr. Amr**A. Abdel Aal (Professor of Surgery, Faculty of Medicine, Ain Shams
University) for his generous help and faithful support.

I would like also to thank **Dr. Zainab Fathy** (Lecturer of Virology and Immunology, Cancer Biology Department, National Cancer Institute, **Dr. Mahmoud Kamal** (M.Sc in Biochemistry, Faculty of Science, Ain Shams University) and **Prof. Dr. Mahmoud El Rouby** (Prof. of Virology and Immunology, Cancer Biology Department, National Cancer Institute) for their great help they have done for this study.

May ALLAH accept the work of all those and reward them for it.

CONTENTS

Title	Page No.
List of Tables	I - III
List of Figures	IV - VII
List of Abbreviations	VIII – X
1- Introduction	1-3
2- Aim of work	3
3-Literature Review	4-34
1. Hepatocellular Carcinoma (HCC)	4
2- Liver cells types and functions	19
3. Stem Cells	23
4- Material and methods	35-46
5- Results	47-73
6- Discussion	74-80
7- Summary	81-83
8- References	84-105
Arabic summary	

LIST OF TABLES

Table No.	Title	Page No.
Tables of Literature Review		
Table (1):	Causes of liver cirrhosis that could result in the	6
	development of hepatocellular carcinoma	
Tables of Ma	terials and Methods	
Table (1):	Primer sequences used for detection of c-Kit gene	42
Tables of Res	sults	
Table (1):	The patients characteristics under the study	47
Table (2):	CD90 expression in tumor-derived stem cells	51
	before and after treatment with different anti HCV	
	therapies.	
Table (3):	CD44 expression in tumor derived-stem cells	52
	before and after treatment with different anti HCV	
	therapies.	
Table (4):	CD133 expression in tumor-derived stem cells	53
	before and after treatment with different anti HCV	
	therapies.	
Table (5):	CD90 + CD44 co-expression in tumor-derived	55
	stem cells before and after treatment with different	
	anti HCV therapies.	
Table (6):	CD133 +CD44 co-expression in tumor-derived	56
	stem cells before and after treatment with different	
	anti HCV therapies.	

Table No.	Title	Page No.
Table (7):	CD90 expression in non tumor-derived stem cells	57
	before and after treatment with different anti HCV	
	therapies.	
Table (8):	CD44 expression in non tumor-derived stem cells	58
	before and after treatment with different anti HCV	
	therapies.	
Table (9):	CD133 expression in non tumor-derived stem cells	59
	before and after treatment with different anti HCV	
	therapies.	
Table (10):	CD90+CD44 co-expression in non tumor-derived	61
	stem cells before and after treatment with different	
	anti HCV therapies.	
Table (11):	CD133 +CD44 co-expression in non tumor-	62
	derived stem cells before and after treatment with	
	different anti HCV. therapies.	
Table (12):	Comparison between CD90 expression in non	63
	tumor and tumor-derived stem cells before and	
	after treatment with different anti HCV therapies.	
Table (13):	Comparison between CD44 expression in non	64
	tumor and tumor-derived stem cells before and	
	after treatment with different anti HCV therapies.	
Table (14):	Comparison between CD133 expression in non	65
	tumor and tumor-derived stem cells before and	
	after treatment with different anti HCV therapies.	

Table No.	Title	Page No.
Table (15):	Comparison between CD90+CD44 co-expression	66
	in non tumor and tumor-derived stem cells before	
	and after treatment with different anti HCV	
	therapies.	
Table (16):	Comparison between CD133 + CD44 co-	67
	expression in non tumor and tumor-derived stem	
	cells before and after treatment with different anti	
	HCV therapies,	
Table (17):	Percent change in CD90 expression in non tumor	68
	and tumor-derived stem cells treated with different	
	anti HCV therapies.	
Table (18):	Percent change in CD44 expression in non tumor	69
	and tumor-derived stem cells treated with different	
	anti HCV therapies.	
Table (19):	Percent change in CD133 expression in non tumor	70
	and tumor-derived stem cells treated with different	
	anti HCV therapies.	
Table (20):	Percent change in CD90+CD44 co-expression in	71
	non tumor and tumor-derived stem cells treated	
	with different anti HCV therapies.	
Table (21):	Percent change in CD133+CD44 co-expression in	72
	non tumor and tumor-derived stem cells treated	
	with different anti HCV therapies.	

LIST OF FIGURES

Fig.	Title	Page No.	
Figures of	Figures of Literature Review		
Fig. (1):	Calculated age specific incidence rates among Egyptian population in the period 2008-2011 according to the National Population-Based Cancer Registry Program, Department of Biostatistics & Cancer Epidemiology, National Cancer Institute.	5	
Fig. (2):	Strategies for primary and secondary liver cancer prevention in healthy subjects and in those with chronic hepatitis infection.	13	
Fig. (3).	Differentiation potential of pluripotent stem cells.	26	
Fig. (4):	Pathophysiological changes take place during long-term inflammation	29	
Figures of	f Results		
Fig. (1):	H&E section of tumor tissue of case (2) showing poorly differentiated hepatocellular carinoma, grade III (200x).	48	
Fig. (2):	H & E section of tumor tissue of case (3) showing hepatocellular carinoma, grade II, (100x).	48	
Fig. (3):	A & B photomicrographs of cultured tumor-derived stem cells showing proliferated spindle cells after 12 days of culture (100x).	49	
Fig. (4):	A & B photomicrographs of cultured non-tumor derived stem cells showing low proliferation rate after 12 days of culture A(100x),B(200x).	50	

Fig.	Title	Page No.
Fig. (5):	Means of expression of CD90 in tumor-derived stem cells after treatment with different anti HCV therapies.	51
Fig. (6):	Means of expression of CD44 in tumor-derived stem cells after treatment with different anti HCV therapies.	52
Fig. (7):	Means of expression of CD133 in tumor-derived stem cells after treatment with different anti HCV therapies.	53
Fig. (8):	Means of expression of CD90, CD44 and CD133 in tumor-derived stem cells after treatment with different anti HCV therapies.	54
Fig. (9):	Means of co-expression of CD90+CD44 in tumor-derived stem cells after treatment with different anti HCV. therapies.	55
Fig. (10):	Means of co-expression of CD133+CD44 in tumor- derived stem cells after treatment with different anti HCV therapies	56
Fig. (11):	Means of expression of CD90 in non tumor-derived stem cells after treatment with different anti HCV therapies.	57
Fig. (12):	Means of expression of CD44 in non tumor-derived stem cells after treatment with different anti HCV therapies.	58
Fig. (13):	Means of expression of CD133 in non tumor -derived stem cells after treatment with different anti HCV therapies.	59

Fig.	Title	Page No.
Fig. (14):	Means of expression of CD90,CD44,and CD133 in non	60
	tumor-derived stem cells after treatment with different anti	
	HCV therapies.	
Fig. (15):	Means of co-expression CD90+CD44 in non tumor	61
	derived stem cells after treatment with different anti HCV	
	therapies.	
Fig. (16):	Means of expression of CD133 +CD44 co-expression in	62
	non tumor-derived stem cells after treatment with different	
	anti HCV therapies.	
Fig. (17):	Means of expression of CD90 in non tumor and tumor-	63
	derived stem cells after treatment with different anti HCV	
	therapies.	
Fig. (18):	Means of expression of CD44 in non tumor and tumor-	64
	derived stem cells after treatment with different anti HCV	
	therapies.	
Fig. (19):	Means of expression of CD133 in non tumor and tumor-	65
	derived stem cells after treatment with different anti HCV.	
	therapies.	
Fig. (20):	Means of co-expression of CD90+CD44 in non tumor and	66
	tumor-derived stem cells after treatment with different anti	
	HCV therapies.	
Fig. (21):	Means of co-expression of CD133 +CD44 in non tumor	67
	and tumor-derived stem cells after treatment with different	
	anti HCV therapies.	

Fig.	Title	Page No.
Fig. (22):	Means of percent change of CD90 expression in non tumor and tumor-derived stem cells treated with different anti HCV therapies.	68
Fig. (23):	Means of percent change of CD44 expression in non tumor and tumor-derived stem cells treated with different anti HCV therapies.	69
Fig. (24):	Means of percent change of CD133 expression in non tumor and tumor-derived stem cells treated with different anti HCV therapies.	70
Fig. (25):	Means of percent change of CD90+CD44 co-expression in non tumor and tumor-derived stem cells treated with different anti HCV therapies.	71
Fig. (26):	Means of percent change of CD133+CD44 co-expression in non tumor and tumor-derived stem cells treated with different anti HCV therapies.	72
Fig. (27):	Gel electrophoresis for expression of β -actin gene (internal control) on (tumor and non-tumor tissue of HCC patients) lane M (100bp molecular weight ladder).	73
Fig. (28):	Gel electrophoresis for expression of c-kit gene on (tumor and non-tumor tissue of HCC patients). The c-kit expressed in HCC, and expression was negative in non-tumor liver tissue. Lane M (100bp molecular weight ladder).	73

(LIST OF ABBREVIATIONS)

5-FU	5-flouro uracil
AFP	Alpha fetoprotein
AFU	Alpha –L- fucosidase
AIH	Autoimmune hepatitis
b-FGF	Basic fibroblast growth factor
BMI	Body mass index
CD	Cluster differentiation
CDK	Cyclin- dependent kinase
cDNA	Complementary deoxyribonucleic acid
CKI	Cyclin- dependent kinase inhibitor
c-kit	Stem cell factor receptor
CLD	Chronic liver disease
CSCs	Cancer stem cells
СТ	Computed tomography
DN	Dysplastic nodule
DENA	Diethyl Nitrosamine
DNA	Deoxyribonucleic acid
ECM	Extracellular matrix
EDTA	Ethylene diamin tetra- acetate
EGF	Epidermal growth factor
ER	Endoplasmic reticulum

ESCs	Embryonic Stem Cells
FCM	Flow cytometry
FGF	Fibroblast growth factor
FITC	Fluorescein isothiocyanate
н&Е	Hematoxillin – Eosin
HBSS	Hanks balanced salt solution
HBV	Hepatitis B virus
НСС	Hepatocellular carcinoma
HCV	Hepatitis C virus
HSCs	Hepatic stellate cells
PSCs	Peri-sinusoidal cells
INF-α	Interferon alpha
iPSCs	Induced pluripotent stem cells
Mm	Micro – meter
MRI	Magnetic resonance imaging
MSCs	Mesenchymal stem cells
MW	Microwave
NAFLD	Non- alcoholic fatty liver disease
NASH	Non alcoholic steato-hepatitis
NPCs	Non parenchymal cells
NT	Non tumor
PTFs	Portal Tract Fibroblasts
OSM	Oncostatin

RBCs	Red blood cells
RF	Radiofrequency
RNA	Ribonucleic acid
RT-PCR	Reverse transcription polymerase chain reaction
SCF	Stem cell factor
SECs	Sinusoidal endothelial cells.
SVR	Sustained viral response
T	Tumor
TGF-β	Transforming growth factor beta
UCB	Umbilical cord blood
US	Ultrasonography
VEGF	Vascular endothelial growth factor