

OPTIMIZATION OF DURABILITY BY TRI-BLEND CONCRETE MIXES CONTAINING FLYASH, SILICA FUME AND GROUND GRANULATED BLAST FURNACE SLAG POWDER (GGBS)

By

Omar Hussein Abd El- Ghany Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

OPTIMIZATION OF DURABILITY BY TRI_BLEND CONCRETE MIXES CONTAINING FLYASH, SILICA FUME AND GROUND GRANULATED BLAST FURNACE SLAG POWDER (GGBS)

By

Omar Hussein Abd El- Ghany Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Under the Supervision of

Prof. Dr. Osama Abd El Ghafour Ahmed Hodhod

Prof. of Properties and Strength of Materials, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

OPTIMIZATION OF DURABILITY BY TRI_BLEND CONCRETE MIXES CONTAINING FLYASH, SILICA FUME AND GROUND GRANULATED BLAST FURNACE SLAG POWDER (GGBS)

By

Omar Hussein Abd El- Ghany Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Approved by the Examining Committee:

Prof. Dr. Osama Abd El Ghafour Ahmed Hodhod, Thesis Main Advisor, Prof. of Properties and Strength of Materials, Faculty of Engineering, Cairo University Prof. Dr. Mohamed Mohsen El.Attar Thesis internal examiner Prof. of Properties and Strength of Materials, Faculty of Engineering, Cairo University Prof. Dr. Mounir Mohmed Kamal Prof. Emeritus of strength and properties, Faculty of Engineering, Menoufia University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

Engineer: Omar Hussein Abd El Ghany

Date of Birth: 6/4/1990 **Nationality:** Egyptian

E-mail: aceomar16@yahoo.com

Phone: 01009155695

Address: 24 Dr. Khalid Street, El- Haram, Giza, Egypt

Registration Date: 1/9/2012 Awarding Date: / /2017

Degree: Master of Science **Department**: Structural Engineering

Supervisors: Prof. Dr. Osama Abd El Ghafour Ahmed Hodhod **Examiners**: Prof. Dr. Osama Abd El Ghafour Ahmed Hodhod

Prof. Dr. Mohamed Mohsen El-Attar

Prof. Dr. Mounir Mohamed Kamel (Prof. Menoufia)

Title of Thesis:

OPTIMIZATION OF DURABILITY BY TRI_BLEND CONCRETE MIXES CONTAINING FLYASH, SILICA FUME AND GROUND GRANULATED BLAST FURNACE SLAG POWDER (GGBS)

Key Words:

Concrete's Durability; Permeability; Potential Alkali-Silica Reactivity; Petro graphical Examination; Fly ash.

Summary:

The concrete is the most used material in construction field, concrete has an advantage from another material use in building as it has durability with time and the most thing effect in durability is permeability; No concrete structure is absolutely waterproof. In this research five mixtures with different percentage of supplementary cementing material are developed. Concrete mix containing cement replacement of 40 % GGBS and 10% silica fume lead to increasing compressive strength from 350 kg/cm2 to 800 Kg/cm2. In addition to permeability reduction (as measured by DIN test) from 18 mm to 5 mm.

Acknowledgments

I would like to express my highest appreciation to my Professor Osama Hodhod, thesis main advisor, Prof. of properties and Strength of Materials, Faculty of Engineering, Cairo University for his supervision, advice, and guidance during the course of his study.

Also, I would like to express my special gratitude and appreciation to my great father for his support, dedication. In addition to my mother - God rest her soul- for her wait for this moment with unconditional love and prayers. Finally, I would like to thank my wife Heba Mahmoud and my sisters –Meral, Maha, Lailafor their love and support.

TABEL OF CONTENT

CHA	APTER 1 :- INRODUCTIONT	Page
1.1 F	FIELD OF STUDY	1
1.2 T	THE SCOPE OF THESIS	2
1.3 Т	THE LAYOUT OF THESIS	3
CHA	APTER 2 :- LITERATURE REVIEW	
2.1	INTRODUCTION	5
2.2	CONCRETE FOR DIAR AL QATARI (NILE CORNESH PROJECT)	5
2.3	LOW W/C AND MOIST_CURE MAKE CONCERET MORE	7
	IMPERMEABLE	/
2.4	REVIEW OF THEORY OF FLUID TRANSPORT IN CONCRETE	10
2	.4.1 ABSORPTIONA	11
2	.4.2 PERMEABILITY	11
	2.4.2.1 GAS PERMEABILITY	11
	2.4.2.2 LIQUID PERMEABILITY	12
2	.4.3 DIFFUSION	12
2.5	SUPPLEMENTARY MATERIALS	13
2	.5.1 SILICA FUME	13
2	.5.2 SLAG	14
2	.5.3 FLY ASH	14
2.6	TEMPERATURE	15
2.7	METHOD TO MEASURE PERMEABILITY IN CONCRETE	16

2.	7.1	GAS	PERMEABILITY	16
	2.7	.1.1	SCH_NLIN METHOD	17
	2.7	.1.2	SURFACE AIR FLOW TEST	18
	2.7	.1.3	AUTOCLAM	20
	2.7	.1.4	TUD METHOD (Reinhardt-Mijnsbergen)	22
	2.7	.1.5	GERMANN'S GAS PERMEATION TEST	22
	2.7	.1.6	CEMBUREAU METHOD	24
2.	7.2	WAT	TER PERMEABILITY	25
	2.7	.2.1	INITIAL SURFACE ABSORPTION TEST (ISAT)	26
	2.7	.2.2	GERMANN WATER PERMEABILITY TEST (GWT 4000)	28
2.8	SUI	MMA	RY AND CONCLUSIONS	29
				<i>29</i>
CHA	APTE	ZR 3:-	TESTS PLAN	
3.1	INT	ROD	UCTION	30
3.2	MIX	X DES	SIGNS	30
3.2	2.1	INCE	REAS THE CEMENT CONTENT (MIX 1)	31
3.2	2.2	INCE	REASE CEMENT CONTENT WITH FLY ASH (MIX2)	32
3.2	2.3	ADD	50% GGBS WITH 50%CEMENT (MIX3)	33
3.2	2.4	ADD	60% GGBS WITH 40%CEMENT (MIX4)	34
3.2	2.5		40% GGBS WITH 50%CEMENT WITH 10% SILIC FUME	35
3.3	TES	(MIX) ST MI	ETHOD	36
3.3			Γ ON MATERIAL (PRELIMINARRY TESTS)	36
2.0	3.3.		CEMENT PHYSICAL AND CHEMICAL PROPERTIES	37
	221	1.2	AND EXPERIMENTAL TESTS SILICA FUME PHYSICAL AND CHEMICAL PROPERTIES	
	ا . ی .		AND EXPERIMENTAL TESTS	49

	3.3.1.3	FLY ASH PHYSICAL AND CHEMICAL PROPERTIES AND EXPERIMENTAL TESTS	51
	3.3.1.4	GGBS PHYSICAL AND CHEMICAL PROPERTIES AND	53
	2215	EXPERIMENTAL TESTS CHEMICAL ANALYSIS OF ACCRECATE, FOR FINE	
	3.3.1.5	CHEMICAL ANALYSIS OF AGGREGATE: FOR FINE AGGREGATE (ASTM C289)	55
3	3.2 TES	STES ON MIXTURE	58
٥.	3.3.2.1	FRESH CONCRETE TEST	58
	3.3.2.2	HARDINING CONCRETE TEST	62
3.4	SUMM	ARY	63
СH	APTER A	: TESTING OF MATERIALS	
CII	ALLENT	. TESTING OF MATERIALS	
4.1	CEME	NT	64
4.	1.1 DE	TERMINATION OF CEMENT GRADE AND TYPE	64
4.	1.2 TES	ST RESULTS	65
	4.1.2.1	TESTS RESULT OF PHYSICAL PROPERTIES	65
	4.1.2.2	TEST CHEMICAL COMPOUNANT OF CEMENT	66
	4.1.2.3	TEST CHEMICAL POTENTIAL COMPOUNANT OF CEMENT	67
4.2	SUPPL	EMENTARY MATERIAL OF CEMENT	68
4.	2.1 SIL	ICA FUME	68
	4.2.1.1	SILICA FUME AND EFFECT IN DURABILITY	68
	4.2.1.2	TEST RESULT	71
	4.	2.1.2.1 TEST REFFRENCE OF SILICA FUME IN ALL SPECS	71
	4.	2.1.2.2 TESTS RESULTE IN LAB	72
4.	2.2 FLY	YASH (TYPE F)	73
	4.2.2.1	THE EFFECT OF FLYASH IN DURABILITY	73
	4.2.2.2	TESTS RESULTE	75

4.2.2.2.1 TEST REFFRENCE OF FLY ASH IN SPECS	75
4.2.2.2.2 TESTS RESULTE IN LAB	79
4.2.3 GROUND GRANULATED BLAST FURNACE SLAG POWDER (GGBS)	80
4.2.3.3 TESTS RESULTE	83
4.2.3.3.1 PHYSICAL PROPERTIES	83
4.2.3.3.2 CHEMICAL PROPERTIES ACCORDING TO BS 6699	84
4.3 FILLING MATERAIL	85
4.3.1 EFFECT OF AGGREGATE IN DURABILITY OF CONCERET	85
4.3.2 EXPREMENTAL TEST OF FINE AGGREGATE	86
4.3.2.1 PHYSICAL TESTS	86
4.3.2.2 CHEMICAL TEST OF FINE AGGREGATE	87
4.3.3 EXPREMENTAL TEST OF FINE AGGREGATE	89
4.3.3.1 PHYSICAL TESTES	89
4.3.3.2 CHEMICAL TESTES	90
4.4 WATER IN CONCERET	93
4.4.1 TEST IN WATER	95
4.5 ADDMIXTURE IN CONCERET	96
4.6 TESTS IN FRESH CONCRETE AND HARDENING CONCRETE	98
4.6.1 RESULT OF FRESH CONCRETE	99
4.6.2 TEST RESULT OF HARDENING CONCRETE	100
4.7 SUMMARY	101
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	104-106

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
2.1	Result of initial surface absorption	27
3.1	Linear interpolation	42
4.1	Ratio of silica fume and its effect of strength	69
4.2	Ratio of silica fume to loss of strength	69
4.3	All stander limits of properties of silica fume	71
4.4	Ratio of fly ash with strength	74
4.5	All stander limits of properties of fly ash	75
4.6	Properties of fly ash	76
4.7	Petro graphical Examination	91