Comparative Study of The possible Effect of Bovine and Some Plant-based Milk on Colainduced Enamel Erosion on Extracted Human Mandibular First Premolar

(Scanning Electron Microscope and X-ray microanalysis Evaluation)

Thesis submitted for partial fulfillment of Master Degree in Oral Biology

By

Nehad Mostafa Abdel-Monsif

B.D.S Faculty of Oral and Dental medicine, Future University 2011

Faculty of Dentistry
Ain Shams University
2017

Under Supervision of

Prof. Dr. Medhat Ahmed El-Zainy

Professor of Oral Biology and Former Vice Dean of Society and Environmental Affairs Faculty of Dentistry, Ain-Shams University

Dr. Marwa M. Abd El-Hamid

Lecturer of Oral Biology Faculty of Dentistry, Ain-Shams University

Faculty of Dentistry
Ain Shams University
2017

Abstract

Increased consumption of acidic soft drinks is becoming an important factor in the development of erosive wear .The potential of dairy drinks to protect enamel against dental erosion has been recorded. Recently, the demand for plant based milk beverages has been gaining popularity and used as an alternative to cow's milk. Aim: reveal and compare the possible effects of bovine and three types of plant-based milk on enamel erosion caused by Coca-Cola®. **Material and method**: 42 extracted premolars were distributed over three groups: Control negative group where teeth were not subjected to any treatment, Control positive group where teeth were subjected to Coca-Cola® and Experimental group where teeth were divided into four subgroups and subjected to Coca-Cola® then soaked in certain type of milk (bovine, soy, almond or oat milk). All groups were prepared for SEM analysis and EDAX. Results: Coca-Cola® beverage significantly altered enamel superficial surface structure causing irregular surface, erosive lesions and cracks .Bovine and plant based milk has a reparative effect on eroded cervical buccal enamel. Conclusion: Almond milk showed better results than other types of milk used concerning Ca and P levels as well as surface morphological alternations. Soy milk showed the least enamel remineralizing effect.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Figures	ii
List of Tables	v
Introduction	1
Review of literature	3
Enamel	3
- Surface structures of Enamel	4
- Chemical structures of Enamel	7
Erosion	7
Coca-Cola`	
Lactose intolerance	
Bovine milk	
Plant-based milk	
- Soy milk	
- Almond milk	
- Oat milk Aim of the study	
Materials and methods	
Results	
- Control negative group	
- Control positive group (cola group)	
- Experimental groups	
Subgroup 1 (milk group)	43
Subgroup 2 (soy group)	45
Subgroup 3 (almond group)	47
Subgroup 4 (Oat group)	
- Statistical analysis	
Discussion	
Conclusions	
Summary	
References	100
Arabia Summary	

List of Abbreviations

ANOVA Analysis Of Variance

BC Before Christ

DRI Daily Recommended Intake

EDXA Energy Dispersive X-ray Micro-Analysis

E150d Sulphite Ammonia Caramel
FDA Food & Drug Administration

FEI Field Electron & Ion

HAP Hydroxyapatite

LD machine Linked Data machine

LDL Low Density Lipoproteins

LMR Longitudinal Micro RadiographyNDNS National Diet & Nutrition Surveys

pH power of Hydrogen

PLM Polarization Light Microscope

P-value Probability value

RDA Recommended Daily Allowance

SD Standard Deviation

SEM Scanning Electron Microscope

SNF Solid Not Fat

S-UTW detector Super Ultra-Thin window detector

TA Titratable Acidity

UHT Ultra- High Temperature

UK United Kingdom

USA United States of America

W.r.t With respect to

Wt% Weight Percentage

List of Figures

Fig. No. Title Page No.

Figure (1): A scanning electron micrograph of the control –ve group,	
cervical third of buccal surface showing clearly defined	
perikymata grooves and ridges (Black arrows), few enamel	
rod ends (Red arrows) and areas of rodless enamel (yellow	
dots) (x1000)	39
Figure (2): A higher magnification of figure 1 showing enamel rod	
ends (Red arrows) and areas of rodless enamel (yellow	
dots) (x4000)	40
Figure (3): A scanning electron micrograph of the control +ve	
group, showing areas of ill-defined enamel structure (blue	
arrows), apparently observed irregular grooves of	
variable length(black arrows) and darkened areas of	
irregular outline(red arrow) (x1000)	41
Figure (4): A higher magnification of figure 3 showing irregular	
enamel surface with some areasof erosion (black arrows)	
and areas of ill-defined enamel structure (x4000)	42
Figure (5): A scanning electron micrograph of the subgroup 1,	
showing small light areas (blue arrows) with large erosive	
areas (red arrows) (x1000).	43
Figure (6): A higher magnification of figure 5 showing small light	
sporadic areas (blue arrows) and large erosive areas (red	
arrows) (x4000)	44
Figure (7): A scanning electron micrograph of the subgroup 2	
showing irregular enamel surface with porous defects	
seemed to be lined by white deposit (blue arrows)	4.5
(x1000)	45
Figure (8): A higher magnification of figure 7 showing deposits that	
just seal the irregularities (blue arrows), and minute	1.0
cracks (red arrows) could be detected(x4000)	40
Figure (9): A scanning electron micrograph of the subgroup 3	
showing areas of calcified deposits are seen along porous	
defects (blue arrows), erosive areas still present (red	A -7
arrow) (x1000)	4/