

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

NUCLEAR MAGNETIC RESONANCE STUDY OF LITHIUM SULPHATE BASED SOLID ELECTROLYTES

A Thesis

Submitted to the Faculty of Science

Ain Shams University

For the Award of the Ph.D. Degree in Science

BY

MOHAMED ABDEL-AZIZ NOUR

M.Sc.

Sharkan

Bayri

Department of physics Faculty of Science Ain Shams University

1996

•

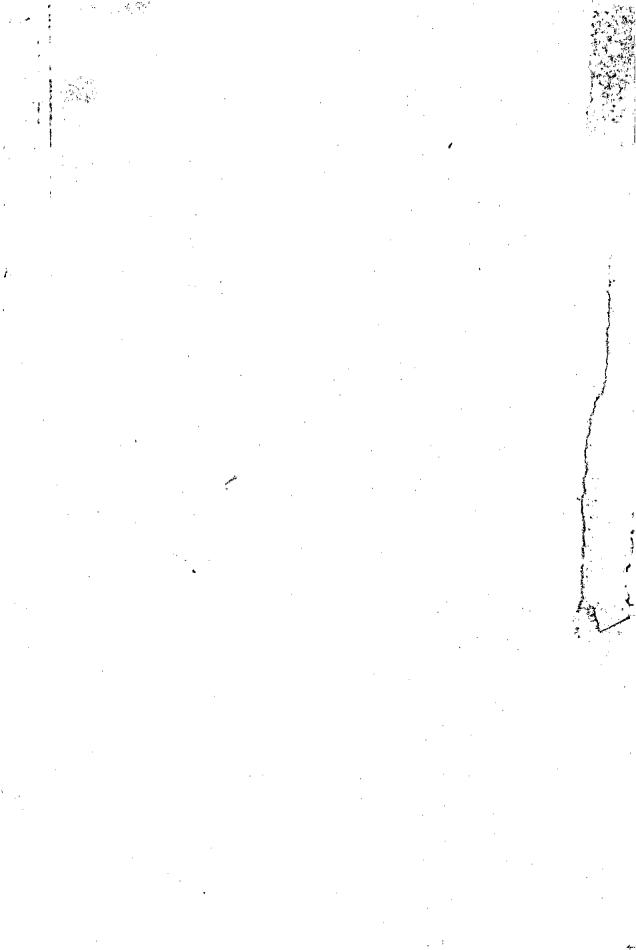
Ain Shams University Faculty of Science Department of Physics

Name of Student: Mohamed Abdel-Aziz Nour

Title of thesis:

Nuclear Magnetic Resonance Study of Lithium Sulphate Based Solid **Electrolytes**

Sui	<u>pervised</u>	B_1	v :


prof. Dr.M.A. Sharkay

prof. Dr. Ahmad Abdel Ghani Awad

prof. Dr. Ray Doubry

<u>Approved</u>

Sharley Burney

ACKNOWLEDGMENT

I wish to express my sincere gratitude to my supervisors whom I mention

- 1- Professor Dr. M. EL-Sharkawy, Chairman of the physics department Ain Shams University.
- 2- Professor Dr. Ahmed Abdel Ghany Awad Professor of physics at Ain Shams University Cairo Egypt.
- 3- Professor Dr. Ray Dupree Professor of NMR at Warwick University in United Kingdom (England)

I also wish to thank the professors who facilitate the completion of this thesis whom I mention

- 1- Professor Dr. Edy Symour, Professor of physics at Warwick University in United Kingdom.
- 2- Professor Dr. Graham Style, Professor of phasics at Warwick University in United Kingdom.

My gratitude to all the members of nuclear magnetic resonance in the physics department at Warwick University United Kingdom.

ABSTRACT

Nour, Mohamed Abdel Aziz, on Nuclear magnetic Resonance study of lithium sulphate based solid Electrolytes. Unpublished Doctor of Philosophy dissertation, University of Ain shams, Abassia, Egypt.

The main purpose of this dissertation is for pulsed nuclear magnetic resonance study and investigation of lithium sulphate and its solid solutions which exhibit fast ion conductivities. In the monoclinic phase Lithium sulphate "Anhydrous" has been studied using NMR technique .The spin lattice and spin-spin relaxation times has been measured at different temperatures between 298K and 825 K at frequencies 12.37 and 21 MHz

In the cubic phase measurements of the spin lattice relaxation time has been made from the transition temperature to the melting point. It was impossible to measure the spin-spin relaxation time for the cubic phase

Assuming that paramagnetic relaxation is irrelevant in the sample, the strong relaxation which is stronger than that caused by dipolar interaction, and which was observed in the cubic phase is attributed to the quadreupolar relaxation by translational diffusion due to the extra vacancies octahedral positions and also due to the rotation of the sulphate ions in the lithium sulphate solid. The measurement of the relaxation time in the lithium sulphate doped with lithium tungestate confirms this idea.

Studies have also been made of the lithium sulphate-zinc sulphate system using NMR technique.

Key Words

NMR (nuclear magnetic resonance,), Solid electrolytes, Fast ion conductors = Superionic conductors and Solid state batteries.

CONTENTS

Approval sheet		
Abstract		
Table of Contents	Page N	(
Chapter I	-	
INTRODUCTION	1	
1-1 The concept of electrical conductivity	•	
and diffusion	1	
1-2 Classification of solids according to	•	
their value of conductivity.	3	
1-3 Ionic and superionic conductors	4	
1-4 Different types of "Molten		
sublattice superionic solids"	7	
1-5 Ion transport in "Molten sublattice		
superionic solids"	8	
1-6 Dynamics and ion transport.	18	
1-7 Microwave conductivity.	28	
1-8 Superionic compounds		
(general consideration)	29	
1-9 Experimental probes	36	
1-10 The superionic conductors of		
lithium sulphate	38	
1-11 Summary.	40	
1-12 Aim of the Present Work	42	
Chapter II		
Nuclear Magnetic Resonance	•	
II-1 Literature survey	43	
I-2 Types of interaction energies.	43	
I-3 Relaxation in nuclear magnetic resonance	⊤ च	
absorption	47	

II-3-a Dipole-Dipole" relaxation	
	4
II-3-b Spin relaxation in liquids by	
translational diffusion	5
II-3-c Relaxation by quadrupolar interaction	5
II-3-d Quadrupolar relaxation by	
diffusing charges	5 4
II-3-e Relaxation by paramagnetic impurities	54
II-4 The effect of paramagnetic impurities	
on relaxation rates in superionic conductors	57
II-5 T1/T2 ratio.	68
Chapter III	
EXPERIMENTAL	
moorotical Dackground.	69
passe spectrometer.	70
-me sample proce	72
III-4 D.C. magnetic field III-5 NMR furnace	77
- I dilliaco	78
- Shar processing	80
- impro-proparation	8 1
- procedure.	8 1
remarks.	85
III-10 Spin-spin relaxation time measurements.	90
Chapter IV	
NMR study of lithium sulphate	
IV-1 Literature survey	
IV-2 The structure of beta lithium sulphate	93
IV-3 The structure of alpha lithium sulphate.	96
β-lithium sulphate	100
IV-4 Experimental	
IV-5 Results and Discussion.	103
The superionic phase of lithium sulphate	103
- " superionic phase of lithium sulphate"	