

GALERKIN/LEAST-SQUARES FEM ON A GPU ARCHITECTURE FOR VISCOELASTIC FLUIDS

By

Mahmoud Mohamed Ahmed Ayyad

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTERS OF SCIENCE
in
Engineering Mathematics

GALERKIN/LEAST-SQUARES FEM ON A GPU ARCHITECTURE FOR VISCOELASTIC FLUIDS

By

Mahmoud Mohamed Ahmed Ayyad

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTERS OF SCIENCE
in
Engineering Mathematics

Under the Supervision of

Assoc. Prof. Maha Amin Hassanein

Associate Professor of Engineering Mathematics Engineering Mathematics and Physics Department Faculty of Engineering, Cairo University Assoc. Prof. Amr Gamal Guaily

Associate Professor of Engineering Mechanics
Engineering Mathematics and Physics Department
Faculty of Engineering, Cairo University

GALERKIN/LEAST-SQUARES FEM ON A GPU ARCHITECTURE FOR VISCOELASTIC FLUIDS

By

Mahmoud Mohamed Ahmed Ayyad

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTERS OF SCIENCE
in
Engineering Mathematics

Approved by the Examining Committee:

Assoc. Prof. Maha Amin Hassanein,	Thesis Main Advisor
,	
Assoc. Prof. Amr Gamal Guaily,	Advisor
Tibboo. 1101. 11111 Sumar Suarry,	114 (1501
Assoc. Prof. Mohamed Abd El Aziz El Beltagy.	Internal Examiner
Assoc. 1101. Wohamed Aud El Aziz El Beltagy.	internal Examiner
Prof. Moustafa Saber Moustafa Abou-Dina,	External Examiner
1 101. Woustafa Saoci Woustafa Abou-Dilla,	External Examiner
(Math Dept., Faculty of Science, Cairo Universi	ty)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Mahmoud Mohamed Mohamed Ahmed Ayyad

Date of Birth: 2/7/1991 **Nationality:** Egyptian

E-mail: mahmoudayyad91@cu.edu.eg

Phone: 01001586932

Address: Faculty of Engineering, Cairo University, Giza

Registration Date: 1 / 3 /2015 **Awarding Date:** / /2017

Degree: Masters of Science

Department: Engineering Mathematics

Supervisors:

Assoc. Prof. Maha Amin Hassanein Assoc. Prof. Amr Gamal Guaily

Examiners:

Assoc. Prof. Maha Amin Hassanein

Assoc. Prof. Amr Gamal Guaily

Assoc. Prof. Mohamed Abd El Aziz El Beltagy Prof. Moustafa Saber Moustafa Abou-Dina

(Math Dept., Faculty of Science, Cairo University)

Title of Thesis:

GALERKIN/LEAST-SQUARES FEM ON A GPU ARCHITECTURE FOR VISCOELASTIC FLUIDS

Key Words:

Finite Element Method, Graphics Processing Units, Galerkin/least-squaresmethod, Viscoelastic Fluids

Summary:

The Galerkin/Least-Squares Finite Element Method (FEM) is used to simulate the flow of blood, modeled as viscoelastic fluid, in abdominal aorta with two aneurysms. Discrete Elastic-Viscous Stress-Splitting (DEVSS) is used to overcome the instability that arises from considering the blood as a viscoelastic fluid. The solution is accelerated by implementing the FEM on graphics processing unit (GPU). The problem is implemented on many-core CPU and multi-core GPU architectures. Numerical experimental results find that the proposed algorithm on the GPU architecture shows a significant speed-up over the CPU architecture implementations.

(Thesis Main Advisor)

(Internal Examiner)

(External Examiner)

(Advisor)

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions.

First of all, I must express my deepest gratitude to my family. I would not have come this far without my parents and sister support and encouragement. They have always motivated me towards making a difference in this world and have been such an incentive for me to work towards being a better person everyday.

I am also very indebted to my advisers Dr. Maha Amin and Dr. Amr Gamal. From the beginning of my masters they believed in me and was encouraging me to move forward. I am so grateful to Dr. Maha for her great support in computer programming and her valuable advices in the thesis organization. Dr. Amr has really been more of an older brother to me. He has offered his ongoing help on both the technical and the personal issues that have faced me. He suggested this research topic and helped in building my foundation in numerical techniques.

Last but not least, I must express many thanks to my friends and fellow TAs. Mohamed Farag, Moheb, Bassem Ibrahim, Bassem Sameer, Shaimaa Ebid, Ahmed Reda and Mahmoud El-Sheikh who have always been there for me showing their help and support. Also, my fellow TAs in the department: Yassin, Mostafa Abdallah, Hussein, Amr, Osama Banhay and Osama Khaled who have made my days as a TA in the department much more enjoyable and have aided me a lot throughout those past four years. Special thanks to Mostafa Radwan for being my companion in my last year. He helped me in many decisions and gave me his valuable advices. Also, I would like to thank Nada for her support.

Mahmoud Ayyad

Table of Contents

A	cknov	viedgements	1
Li	st of '	Tables	v
Li	st of l	Figures	vi
Li	st of A	Algorithms	ix
Li	st of S	Symbols and Abbreviations	X
Al	bstrac	et et	xiii
1	Intr	oduction	1
	1.1	Motivation	. 1
	1.2	Graphics Processing Unit (GPU)	
	1.3	Mathematical Modeling and FEM Formulation	
	1.4	The Simulation of the Abdominal Aortic Aneurysm Problem	
	1.5	Thesis Organization	
2	Gra	phics Processing Unit (GPU)	5
	2.1	Introduction	
	2.2	GPU Computing	. 8
		2.2.1 Terminologies	. 8
		2.2.2 Kepler Architecture	
		2.2.3 Compute Unified Device Architecture (CUDA)	
	2.3	Performance Measurement	
		2.3.1 Execution time	
		2.3.2 Memory Bandwidth (Data Throughput)	
		2.3.3 Computation Throughput	
		2.3.4 Occupancy	
	2.4	Toolkits	
		2.4.1 CuBLAS	
		2.4.2 CuSPARSE	
		2.4.3 MAGMA	
	2.5	A Solved Example - Matrix-Matrix Multiplication	
	2.6	Streaming	. 23
3		hematical Modeling and Finite Element Analysis	25
	3.1	Governing Equations	
		3.1.1 Balance Laws	
		3.1.2 Constitutive Equations	
		3.1.2.1 Newtonian Fluids	
		3.1.2.2 Generalized Newtonian Fluids	
		3.1.2.3 Viscoelastic Fluids	. 26

	3.2	Non-d	imensiona	alization Scheme	27
	3.3			lenges	
		3.3.1		ompressibility Constraint	
		3.3.2		vection dominance	
		3.3.3	Extra Co	onvection in the Constitutive Equation	30
	3.4	The Fi		Equations	31
	3.5			Formulation	32
	3.6			Scheme	
	3.7				38
	3.8			Algorithm	38
		3.8.1		Discretization	39
		3.8.2		eal Integration and Building Local Matrices	40
		3.8.3		Matrices Assembly	41
		3.8.4		Vector Multiplications	42
		3.8.5		of the Linear System of Equations	
4	Vali	dation (Cases		45
-	4.1			l Simulation	
		4.1.1		ren Cavity (LDC)	
			4.1.1.1	Problem Definition	45
			4.1.1.2		45
			4.1.1.3	Results and Discussion	46
		4.1.2		ver a Cylinder (FOC)	
		1.1.2	4.1.2.1	Problem Definition	52
			4.1.2.2	Boundary and Initial Conditions	53
			4.1.2.3		53
	4.2	Viscoe		id Simulation	59
	1,2	4.2.1		ren Cavity (LDC)	
		1,2,1	4.2.1.1	Results and Discussion	59
_					
5				neurysm Problem	63
				ion	63
	5.2			dary Conditions	64
	5.3			ization	64
	5.4			lts	64
		5.4.1		an Fluid Simulation	65
		5.4.2		astic Fluid Simulation	66
			5.4.2.1	Flow Pattern	66
			5.4.2.2	Wall Shear Stress (WSS)	68
			5.4.2.3	Wall Pressure	70
6	Imp			he Graphics Processing Unit	71
	6.1	Literat	ture Revie	W	71
	6.2	FEM U	Using GPU	IJs	72
		6.2.1	Building	g Local Matrices	72
			6.2.1.1	Calculating Required Parameters	72
			6.2.1.2	Generating Local Matrices	73

		6.2.2	Global Matrix Assembly	74
		6.2.3	Matrix-Vector Multiplication	75
		6.2.4	Solution of Linear System of Equations	75
	6.3	GPU a	and Hybrid CPU-GPU Implementations	76
	6.4	Result	S	78
		6.4.1	Execution Time	78
		6.4.2	Visual Profiler	82
7	Futı	ıre Woı	·k	85
	7.1	Summ	ary of Research	85
	7.2	Thesis	Contribution	85
	7.3	Future	Work	85
		7.3.1	Improving FEM Implementation on GPU	85
		7.3.2	Elasticity of Wall Artery and Pulsating Boundary Condition	86
		7.3.3	Arteries with Branches and Unstructured Mesh	86
Re	eferen	ces		87

List of Tables

2.1	All GPU Architectures produced by Nvidia till 2016	8
4.1	Comparison for the velocity component in <i>x</i> -direction along vertical Line	
	through geometric center of the cavity	50

List of Figures

2.1	Floating point operations per second for the CPU and GPU [20]	5
2.2	Memory bandwidth of GeForce and Tesla GPUs compared with that of	
	Intel CPU [20]	6
2.3	GPUs devote more transistors for data processing (ALU) than flow control	
	and data cache [20]	6
2.4	A 2-D grid of thread blocks and a 2-D thread block [20]	9
2.5	Memory hierarchy [20]	10
2.6	Kepler Streaming Multiprocessors (SMx) [36]	11
2.7	One Kepler Streaming Multiprocessor [36]	11
2.8	Kepler Memory Hierarchy [36]	12
2.9	L1- and L2-Cache Memories relation with SM	12
2.10	Visualization of CUDA Processing Flow	15
2.11	Running time for matrix-matrix multiplication on CPU and GPU for	
	different matrix sizes	21
2.12	Running time for matrix-matrix multiplication on GPU and using CuBLAS	
	package for different matrix sizes	21
2.13	Running time for matrix-matrix multiplication using CuBLAS package	
	for different matrix sizes	22
2.14	GFLOPS for matrix-matrix multiplication using CuBLAS package for	
	different matrix sizes	22
2.15	Four matrix-matrix multiplications executed concurrently each matrix of	
	size 32X32	23
2.16	Four matrix-matrix multiplications executed concurrently each matrix of	
	size 64X64	23
2 1		20
3.1	Galerkin and upwind Petrov-Galerkin weight function [50]	29
3.2	Comparison of streamline upwind/Petrov-Galerkin (SU/PG) and Galerkin	20
2.2	weight functions [50]	30
3.3	Figure to the left is the actual element in Cartesian form, figure to the right	22
2 4	is the element in the local coordinates	33
3.4	Mesh Numbering	40
3.5	Local Matrix Mapping to Global Matrix	42
3.6	Matrices Layout	42
4.1	LDC geometry	45
4.2	Mesh independent solution for the LDC problem	46
4.3	Comparison of normalized velocity component in x-direction at $Re \approx 0$	10
	with pakdel [60] for the LDC problem	47
4.4	Streamlines at $Re \approx 0$ for the LDC problem	47
4.5	Streamlines at $Re \approx 0$ for the LDC problem taken from Pakdel et al [60].	48
4.6	Comparison of normalized velocity component in x-direction at $Re = 100$	10
	with Chung [62] and Hirsh [61] for the LDC problem	48
	Character to a larger than the control of the	

4.7	Streamlines at $Re = 100$ for the LDC problem for present work at time (a)	4.0
4.0	1 second (b) 10 seconds	49
4.8	Streamlines at $Re = 100$ for the LDC problem from Hirsh [61] at time (a) 1 second (b) 10 seconds	49
4.0		45
4.9	Streamlines at $Re = 100$ for the LDC problem from Chung et al [62] at time 10 seconds	50
<i>1</i> 10	Comparison of normalized velocity component in x-direction at $Re = 1000$	50
4.10	with Tezduyar [55] for the LDC problem	51
4 11	Streamlines at $Re = 1000$ for the present work for the LDC problem	51
	Streamlines at $Re = 1000$ for the LDC problem at steady state from Tezdu-	<i>J</i> 1
2	yar [55]	52
4.13	Different flow regimes over a cylinder [64]	52
	FOC geometry	53
	FOC body-fitted mesh with total 3600 elements	54
4.16	Streamlines at $Re = 40$ for body fitted mesh for the FOC problem	54
4.17	Zoom in the vortices shown in the previous figure	55
4.18	Streamlines at $Re = 100$ for the present work for the FOC problem	55
	Streamlines at $Re = 100$ for FOC problem taken from Tezduyar [55]	56
	Pressure contours at $Re = 100$ for body fitted mesh for the FOC problem .	56
	Pressure contours at $Re = 100$ for FOC problem taken from Tezduyar [55]	57
4.22	Streamlines at $Re = 100$ showing the shedding phenomenon of the present	
	work	57
4.23	Streamlines at $Re = 100$ showing the shedding phenomenon from Brooks	- .
4 0 4	[50]	58
	Pressure contours at $Re = 100$ around the cylinder of the present work	58
	Pressure contours at $Re = 100$ around the cylinder from Brooks [50]	59
4.20	Comparison of streamlines at $Re \approx 0$ for the LDC problem for viscoelastic fluids at (a) $We = 0.1$ and (b) $We = 0.5$	60
1 27	Velocity component u at $Re \approx 0$ at $We = 0.1, 0.5$	60
	Comparison of normalized velocity component x-direction at $Re \approx 0$ and	OC
7.20	We = 0.1 with Yapici [65]	61
4 29	Comparison of normalized velocity component x-direction at $Re \approx 0$ and	01
1.27	We = 0.5 with Yapici [65]	61
4.30	Pressure contours at $Re \approx 0$ for the LDC problem with viscoelastic fluids	0.
	at (a) $We = 0.1$ and (b) $We = 0.5$	62
4.31	Shear stress contours at $Re \approx 0$ for the LDC problem with viscoelastic	
	fluids at (a) $We = 0.1$ and (b) $We = 0.5$	62
5.1	Geometry of Abdominal Artery with two Aneurysms	63
5.2	Discretized domain of Abdominal Aorta with two Aneurysms	64
5.3	Wall Shear Stress (WSS) where blood is modelled as Newtonian fluid and	(
5 1	at $Re = 250$	65
5.4	Streamlines for Finel [66] at $Re = 100$	65
5.5 5.6	Streamlines for Finol [66] at $Re = 100$	oc
5.0	[71]	66
	17-1	-

5.7	Streamlines for the flow of blood in AAA at (a) $Re = 10$ (b) $Re = 50$ (c)	
	Re = 100 (d) $Re = 150$ (e) $Re = 250$ (f) $Re = 500$ at the steady state	68
5.8	Streamlines for the blood flow in AAA at $Re = 500$ at the steady state in	
	case of (a) viscoelastic fluid and (b) Newtonian fluid	68
5.9	WSS distribution at different Reynolds numbers at steady state for viscoelastic fluid	69
5.10	WSS distribution at different Reynolds numbers at steady state for vis-	-
	coelastic and Newtonian fluids	69
5.11	Pressure distribution at different Reynolds numbers at steady state	70
6.1	Storage Method of the Local Matrix	72
6.2	Show Colouring Technique	74
6.3	Hybrid CPU-GPU	77
6.4	GPU only	77
6.5	The execution time of the whole FEM process using Xeon, Nvidia Tesla,	
	Nvidia GeForce and the hybrid CPU-GPU	78
6.6	The execution time of the whole FEM process using Nvidia Tesla and the	
	hybrid CPU-GPU	79
6.7	The speed-up of the whole code when using Tesla K20X and hybrid	
	CPU-GPU platform	80
6.8	The speed-up of the whole code when using Geforce GT 750M	80
6.9	The execution time of generating the local matrices using GPU Tesla only	
	and hybrid CPU-GPU platform	81
6.10	The speed-up of the local and global matrices formation when using Tesla	
	K20X	81
6.11	The speed-up of the local and global matrices formation when using	
	GeForce GT 750M	82
	Profiling the whole code on GPU	82
6.13	Streaming for right hand side calculation	83

List of Algorithms

2.1	Pseudo-code showing how to use CUDA-C	15
2.2	Pseudo-code to calculate the execution time in milliseconds	15
2.3	Pseudo-Code of matrix multiplication on CPU	20
2.4	Pseudo-Code of matrix multiplication on GPU	20
3.1	The FEM on the CPU platform	39
3.2	Pseudo-Code to build the local matrices implemented on the CPU	
3.3	Pseudo-Code to assemble the global matrices on the CPU platform	41
6.1	Element parameters for each local matrix using CUDA	73
6.2	Build the local matrices using GPU	
6.3	Assemble the global matrix using GPU	75
6.4	Flow variables solution on the GPU platform	76

List of Symbols and Abbreviations

 ρ Density

t time

V Velocity vector

 ∇ Vector differential operator

au Extra stress tensor

P Pressure

 μ_s Shear-rate viscosity

D Rate of strain tensor

 λ Relaxation time

 $\tau_{\rm s}$ Newtonian contribution on extra stress tensor

 $\tau_{\mathbf{p}}$ Polymeric contribution on stress tensor

L Characteristic length

 u_{∞} Reference velocity

 p_{∞} Free stream pressure

S Polymeric axial stress

Q Polymeric shear stress

T Polymeric normal stress

Re Reynolds Number

 μ Total viscosity

 μ_p Polymer shear-rate viscosity

 β Viscosity ratio

We Weissenberg number

γ Penalty coefficient

 δ Artificial coefficient

au Artificial time

 ϵ Pressure dissipation parameter

B Artificial stress tensor

u Velocity component in *x*-direction

v Velocity component in *y*-direction

 N_i Shape function

W_i Weight function

 \hat{u} Average velocity component in x-direction at the centre of the element

 \hat{v} Average velocity component in y-direction at the centre of the element

 ξ Horizontal axis in the element local coordinates

 η Vertical axis in the element local coordinates

 $\triangle t$ Time step

 $\|\mathbf{u}^{\mathbf{e}}\|$ Vertical axis in the element local coordinates

 α Stabilization parameter in GLS weight function

 \mathbf{K}_{ie} ith local matrix

 \mathbf{K}_i ith global matrix

 Λ Aspect ratio

D Artery diameter

 D_1 First aneurysm diameter

*D*₂ Second aneurysm diameter

 L_1 First aneurysm length

 L_2 Second aneurysm length

 L_T Total aneurysm length

 D_2 Second aneurysm diameter

 N_e Total number of elements

 N_n Total number of nodes

 n_x Number of nodes in x-direction

 n_y Number of nodes in y-direction

GPU Graphics Processing Unit

CPU Centeral Processing Unit