

تأثير التمب كغذاء متخمر منتج من بعض البقوليات على فئران التجارب المصابة بارتفاع مستوى الكوليستيرول

رسالة مقدمة الى كلية التربية النوعية- جامعة عين شمس استكمالا لدرجة دكتوراه الفلسفة في الاقتصاد المنزلى (تخصص تغنية و علوم أطعمة)

من سناء محمد محمود جادالله ماجستير في الاقتصاد المنزلي (تخصص تغذية و علوم أطعمة) اشراف

د. علية محمد على الغرابلي استاذ مساعد التغذية و علوم الأطعمة قسم الاقتصاد المنزلي كلية التربية النوعية جامعة عين شمس

د. آمال أحمد محمد حسن استاذ مساعد الصناعات الغذائية قسم علوم الأغذية -كلية الزراعة جامعة عين شمس

أ.د. نجوى موسى حسن رسمى أستاذ الصناعات الغذائية قسم علوم الأغذية-كلية الزراعة جامعة عين شمس

د. أشرف عبد العزيز عبد المجيد استاذ مساعد التغذية و علوم الأطعمة - كلية الاقتصاد المنزلي- جامعة حلوان

Ain Shams University Faculty of Specific Education Department of Home Economics

EFFECT OF TEMPEH AS A FERMENTED FOOD PRODUCED FROM SOME LEGUMES ON HYPERCHOLESTEROLEMIC RATS

Thesis

Submitted to Faculty of Specific Education, Ain Shams University
In partial fulfillment of

Ph. D. degree

In Home Economics (Nutrition and Food Science)

by

Sanaa Mohammad Mahmmoud Gadalla M.Sc. in Home Economics (Nutrition and Food Science)

Supervised by

Prof. Dr. Nagwa Mousa Hassan Rasmy

Professor of Food Technology Food Science Department Faculty of Agriculture-Ain Shams University

Dr. Ashraf Abd El-Aziz Abd El-Megied

Assistant Professor of Nutrition and

Food Science-Food Science Department Faculty of Home Economics Helwan University

Dr. Alia Mohamed Ali EL-Gharably

Assistant Professor of Nutrition and Food Science-Home Economics Department -Faculty of Specific Education- Ain Shams University.

Dr. Amaal Ahmed Mohamed Hassan

Assistant Professor of Food Technology

Food Science Department

Faculty of Agriculture Ain Shams University

2007

CONCLUSION

- 1-Using *Rhizopus oligosporus* for tempeh fermentation gave better results than fermentation with *R. stolonifer*, moreover, better results were obtained by using chemical acidification with 0.1% vinegar or 0.85% lactic acid (pH 4 and 4.5) than natural acidification (pH 5.5).
- 2-The best conditions for production of good soy and lupine tempeh were, acidification with 0.1% vinegar, fermentation with 3.22X10⁵ spores suspensions/ 100 g soybeans or lupine seeds, and incubation at 30^oC for 20 and 28 hr.
- 3-During tempeh production, protein% and crude fibers% were significantly increased, while fats% and ash% were significantly decreased, in good and acceptable soy and lupine tempeh.
- 4- Soy and lupine tempeh acidified by vinegar and fermented with *R. oligosporus* have the best chemical properties (high protein% and crude fibers%, and low fats% and phytic acid).
- 5- Tempeh fermented with *Rhizopus oligosporus* have lower level of microbial load in comparison to tempeh fermented with *Rhizopus stolonifer*. Soy and lupine tempeh fermented with *R. oligosporus* were positive for ABC whereas, those fermented with *R. stolonifer* were found to be positive for ABC and *Staphylococcus*.

6- There is a positive response for all types of prepared soy and lupine tempeh, where tempeh cooked with tomato as well as sweet tempeh showed the highest sensory scores. They were very good in all sensory attributes, Tamiaa and fried tempeh came in the second rank and they were good in all sensory attributes. The lowest sensory attributes were recorded for grilled soy as well as lupine tempeh where it was acceptable

7-Results indicated that feeding hypercholesterolemic rats on 7% of soy and lupine tempeh protein lowered serum cholesterol level by 46%-48%, and also reduced LDL-c by 72% - 75% as compared to the control (+ve) group. On the other hand, DHL-c was increased by more than 70% in hypercholesterolemic rats fed on 7% of both type of tempeh protein. Meanwhile, feeding on 3.5% of soy and lupine tempeh protein reduced serum cholesterol and LDL-c levels by more than 1/3 and 1/5 as compared to the control (+ve) group. On the other hand, feeding hypercholesterolemic rats on both levels of lupine tempeh reduced triglycerides as well as VLDL-c levels by 36%-42%, comparable to 26%-30% in hypercholesterolemic rats fed on both levels of lupine tempeh protein. While, feeding hypercholesterolemic rats on 7% of soy and lupine tempeh lowered serum cholesterol level by about 46% -48%. Moreover, results showed a controlling effect on the activity of AST and ALT enzymes as well as on the concentrations of uric acid and urea nitrogen in serum of hypercholesterolemic rats fed on soy and lupine tempeh. Whereas both levels of lupine tempeh lowered the activity of AST enzymes by about 37%, while, the activity of ALT enzyme was lowered by more than 40%. On the other hand, feeding on soy tempeh lowered the activity of AST enzyme in serum of hypercholesterolemic rats by about 10%-30%, comparable to 23%-29%, decrease in the activity of ALT enzyme. Also, there was a marked reduction in the concentrations of uric acid (14.27%) and urea nitrogen (16.5%) in serum of hypercholesterolemic rats fed on 7% of lupine tempeh protein, followed by 19% (urea nitrogen) and 14% (uric acid) in serum of hypercholesterolemic rats fed on 7% of soy tempeh protein. In addition, soy and lupine tempeh when fed to hypercholesterolemic rats at levels of (3.5 and 7%) protein) showed a protective effects of hepatocytes against degenerative changes induced by hypercholesterolemia. The best results were obtained at high level. However, the previous benefits combined with an increase in food intake and body weight when fed hypercholesterolemic rats on soy tempeh, while combined with a significant decrease in food intake and body weight when fed hypercholesterolemic rats on lupine tempeh.

RECOMMENDATIONS

- 1-Fermentation with 10 ml *R. oligosporus*, acidification with 0.1% vinegar and incubation at 30°C for 20 and 28 hr were the optimal conditions for production of soy and lupine tempeh with the best chemical properties and lowest microbial contamination.
- 2- Storage of tempeh for long periods must be avoided, because the major flatus-related oligosaccharides% increased by storage of tempeh at low temperatures for long periods.
- 3- Tempeh cooked with tomato, sweet tempeh, tempeh prepared as Tamiaa and fried tempeh are considerable suitable ways for consuming soy and lupine in Egypt, specially cooked and sweet tempeh.
- 4-Incorporation of soy or lupine tempeh daily in the diet of hypercholesterolemic persons is useful for reducing the levels of bad cholesterol (LDL-c and VLDL-c); and also for elevating the benefit cholesterol (HDL-c) level. In addition soy and lupine tempeh have controlling effects on the hyperactivities of the liver and kidneys functions.
- 5- Lupine tempeh is recommended for treatment of hypercholestermia in obese peoples, while soy tempeh could be consumed for treatment of hypercholestermia in normal or under weighted peoples.

5-More researches are needed for the investigation of the mechanisms responsible for the performance of hypocholesterolemic function of both types of tempeh.

Contents I-INTRODUCTION...... II- REVIEW OF LITERATURE......6 II.1. Tempeh as a fermented food......6 II-2. Production of tempeh......11 II.3. Chemical changes occur during tempeh production.. 13 II-5. Sensory evaluation of tempeh26 of feeding on fermented and II.6.Biological effects unfermented soybean and lupine.....31 II.7.1.Potential health benefits of unfermented legumes......32 II.7.2. Consumption of fermented legumes and cholesterol reduction......41 III- MATERIALS AND METHODS......44 III. 1. Materials......44 III-2-1-Production of tempeh......37 III-2-2-Physicochemical analysis of the produced tempeh......52 III-2-2.3. Crude fiber......52 III-2-2.4. Crude protein content......53 III-2-2.5. Extraction of lipids......53 III-2-2.6. PH value......53 III-2-2.7. Determination of phytic acid......53 III-2-2.8. Determination of oligosaccharides......54

III-2-3. Microbiological analysis of the produced	
Tempeh	55
III-2-3-1. Aerobic mesophilic bacterial count	56
III-2-3-2. Yeast and Molds	56
III-2-3-3. Coliform bacteria	57
III-2-3-4. Salmonella	58
III-2-3-5. Staphylococci	58
III-2-4.Sensory evaluation of soy and lupine	tempeh
Properties	59
III.2-5-Biological evaluation of soy and lupine	tempeh
samples on hypercholesterolemic rats	63
III-2-5-1-Feeding experiment	63
III-2-5-1-1-Preparation of the basal diet	63
III-2-5-1-2-Grouping of rats	65
III-2-5-2-Analytical methods	68
III-2-5-2-1-Determination of serum cholesterol	69
III-2-5-2-2-Determination of serum triglyceride	(T.G.)
	69
III-2-5-2-3-Determination of serum high-density	
lipoprotein cholesterol	70
III-2-5-2-4-Determination of serum low-density	
lipoprotein cholesterol	71
III-2-5-2-5-Determination of serum very low den	sity
lipoprotein cholesterol	72
III-2-5-2-6-Determination of serum Aspartate	72
III-2-5-2-7-Determination of serum Alanine	Amine
Transferase U/L (ALT)	73
III-2-5-2-8-Determination of serum urea Nitrogen	74
III-2-5-2-9-Determination of serum Uric acid	75

III-2-5-2-Histopathological examination of liver76
III.2.5.3. Statistical analysis
IV- RESULTS AND DISCUSSION
IV.1. Production of tempeh from soybean and sweet lupine
seeds77
IV.1.1. Characteristic features of the produced tempeh78
IV.1.2. Acceptability of soy and lupine tempeh fermented
with R oligosporus84
IV.1.3. Acceptability of soy and lupine tempeh fermented
with R. stolonifer85
IV.2.Chemical characteristics of the produced
tempeh81
IV.2.1. Soy tempeh:
IV.2.1. Proximate chemical constituents, crude fibers, and pH
value94
IV.2.1.1. Soy tempeh fermented with <i>R. oligosporus</i> and <i>R</i> .
stolonifer94
IV.2.1.2. Soy tempeh fermented with <i>R. oligosporus</i> and <i>R</i> .
stolonifer105
IV.2.2.Phytic acid and oligosaccharides of119
IV.2.2.1. Soy tempeh fermented with <i>R. oligosporus</i> and <i>R</i> .
stolonifer119
IV.2.2.2. Lupine tempeh fermented with R. oligosporus and
<i>R. stolonifer</i> 126
IV.3. Microbiological quality of soy and lupine
tempeh137
IV.3.1.Soy and lupine tempeh fermented with R. oligosporus
137

IV.3.2 Soy and lupine tempeh fermented with R stolon	 iifer
	125
IV.4Sensory evaluation of tempeh prepared by diffe	rent
methods	159
IV.4.1. Soy tempeh	159
IV.4.2. Lupine tempeh	163
V.5. Biological effects of feeding on soy and lupine tempel	n on
hypercholesterolemic rats	170
V.5.1. Nutritional assay	170
V.5.1-1. Effect of soy tempeh and lupine tempeh on d	
food intake, body weight gain percent in hypercholesterole	mic
rats	170
V.5.1-2. Effect of soy and lupine tempeh on organs weigh	it to
body weights% of hypercholesterolemic rats	177
V.5.2. Lipids fractions	186
V.5.2-1. Effect of soy and lupine tempeh on serum cholest	erol
and triglycerides of hypercholesterolemic rats	186
V.5.2-2. Effect of soy tempeh and lupine tempeh on lipopro	tein
fractions of hypercholesterolemic rats	191
High-density lipoprotein (HDL-c)	191
Low density lipoprotein (LDL-c)	192
Very low density lipoprotein (VLDL-c)	193
V.5.3. Effect of soy-tempeh and lupine-tempeh on liver	and
kidney functions of hypercholesterolemic rats	202
V.5.3-1. Liver functions	202
Aspartate amine transferase (AST) enzyme	202
Alanine amine transferase (ALT) enzyme	203
V.5.3-2. Kidney functions	209
Uric acid (UA)	209

Urea nitrogen (UN	209
V.5.4. Histopathological effect of soy tempeh and lu	upine
tempeh on liver cells of hypercholesterolemic rats	.216
CONCLUSION	229
RECOMMENDATIONS	232
SUMMARY	233
REFERENCES	244
ARABIC SUMMARY	· • • • • •