

Faculty of Women for Arts, Science and Education. Ain Shams University

Ecofriendly antimicrobial pigments produced by Actinomycetes and their application in textiles dyeing

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (Microbiology)

By

Howida Reda Mohammed Mohammed

B. Sc Microbiology and Chemistry (2008)

Under Supervision

Dr. Zeinab M. Hassan kheiralla.Prof. of Microbiology, Botany
Department, Faculty of Women,
Ain Shams University.

Dr. Maha Amin Hewedy.Prof. of Microbiology, Botany
Department, Faculty of Women,
Ain Shams University.

Dr. Osama Mohamad Mostafa Darwesh.

Researcher of environmental microbiology, Agricultural microbiology department, National Research Centre.

To

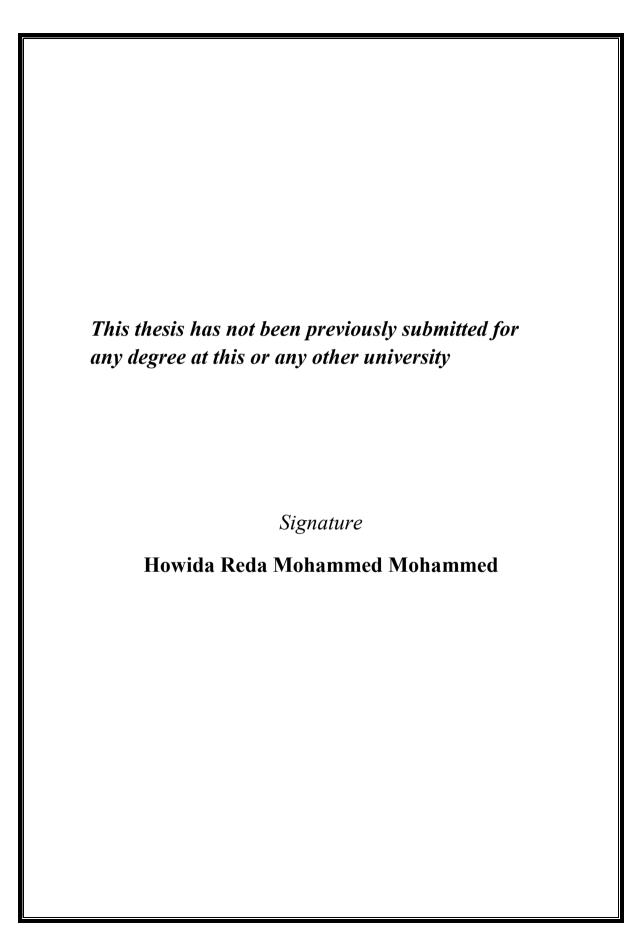
Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University **2017**

M.Sc. Thesis

Name: Howida Reda Mohammed Mohammed

Title: Ecofriendly antimicrobial pigments produced by

Actinomycetes and their application in textiles dyeing


Scientific Degree: M.Sc. in science (Microbiology)

Deparement: Botany

Faculty Name: Faculty of Women for Arts, Science and

Education

University: Ain Shams University

Supervisors

Dr. Zeinab M. Hassan kheiralla.

Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Dr. Maha Amin Hewedy.

Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Dr. Osama Mohamad Mostafa Darwesh.

Researcher of environmental microbiology, Agricultural microbiology department, National Research Centre.

Faculty of Women for Arts, Science and Education Ain Shams University

National Research Centre.

Approval Sheet

Title: Ecofriendly antimicrobial pigments produced by Actinomycetes and their application in textiles dyeing.

Name: Howida Reda Mohammed Mohammed

Approved by	signature
Dr. Zeinab M. Hassan kheiralla Prof. of Microbiology, Botany Department,	
Faculty of Women for Arts, Science and	
Education, Ain Shams University.	
Dr. Maha Amin Hewedy	
Prof. of Microbiology, Botany Department,	
Faculty of Women for Arts, Science and	
Education, Ain Shams University.	
Dr. Osama Mohamad mostafa Darwes	sh
Researcher of environmental microbiology,	
Agricultural microbiology department,	

Acknowledgments

First, I can't be thankful enough for Allah to whom I am indebted for his blessings on me.

I want to express my deepest appreciation and sincere gratitude to my supervisors for initially accepting me as a Master's Candidate and later on for their endless encouragement, constructive criticism, helpful and enlightening discussions, guidance, valuable ideas and basic editing during the preparation of this work.

My special thanks go to **Dr. Zeinab Kheiralla** and **Dr. Maha Hewedy**, Professor of microbiology, Botany Department
, Faculty of Women for Arts, Science and Education, Ain
Shams University who suggested the point of this work and
also for their endless encouragement. I am very proud to
perform research under their supervision.

My special thanks also go to **Dr. Osama Darwesh** at National Research Centre, Egypt, for his great support and help in all practical work and constructive reviewing of this thesis.

I would like to express my sincere gratitude to **Dr. Yehya A. Youssef** Prof., Dye chemistry and textile dyeing technology, Textile Research Division, National Research Centre, for his help in measurements of the dyed fabrics.

I would like also to express my sincere gratitude to **Dr**. **Mohammed El shakr** professor of chemistry, Chemistry

Department, faculty of science, Cairo University, for his help
in understanding and writing the Elemental Analysis and

Spectroscopic Analysis part.

Finally, I would like to extend my sincere appreciation and acknowledge to all doctors and colleagues in Botany Department, Ain Shams University and also to all doctors in Agricultural microbiology Department, National Research Centre, whose names and contributions I cannot enumerate due to space limitation. To you all, I say Thanks very much

Last but not least, my deepest feelings to my family for their continuous help and support through this work.

Howida R. Mohammed

Dedication

I would like to dedicate this work to the spirit of my grandmother Zeinab, my aunt Nadia and my uncle Samir dear.

Also, I would like to dedicate this work to my wonderful mother Afaf, my husband Ali, my daughters (Salma and Retag), my dear sister, my brothers, my father and all my family and also to express my sincere and deepest thanks to them for their great help and support.

Howida R. Mohammed

Contents

List of Tables	I
List of Figures	Iv
1-ABSTRACT	1
2-INRODUCTION	3
3-AIM OF WORK	7
4-REVIEW OF LITERATURE	8
4.1. Actinobacteria.	8
4.1.1. Structure of Actinobacteria	8
4.1.2. Growth on solid media	9
4.1.3. Spores of actinobacteria	9
4.1.4. Distribution of actinobacteria	12
4.1.5 Cell Wall Composition	13
4.1.6. Bioactive compounds from actinomycete	14
4.2. Dyes and pigments	15
4.2.1. Types of pigments	17
i- Synthetic pigments	17
a- Types of Synthetic Dyes	18
ii- Natural pigments	19

a- Microbial pigments	19
b- Advantages of microbial pigments	20
c- Classification of microbial pigments	21
d- Application of pigments	23
1- In food industry	23
2- In pharmaceutical industry	26
3- In Textile industry	28
4.2.2. Pigments from actinobacteria	31
4.2.3. Melanin pigment from actinobacteria	31
4.2.4. Antimicrobial activity of actinobacterial bioactive compounds	33
4.3. Nanotechnology	34
4.3.1. Nanoparticles types	35
4.3.2. Synthesis of Nanoparticles	37
a- Intracellular synthesis of nanoparticles by fungi	38
b- Extracellular synthesis of nanoparticles by fungi	38
4.3.3. Silver particles/ nanostructures	39
4.3.4. Different Methods of Synthesis of Silver Nanoparticles	42

4.3.5. Pharmacological Applications of nanotechnology	44
5- MATERIALS AND METHODS	48
5.1. Media used	48
5.2. Samples collection	58
5.2.1. Isolation and purification of pigments producing actinobacteria	58
5.2.2. Screening of isolated actinobacteria for pigments production	59
5.2.3. Identification of the most efficient isolate in pigment production	60
5.2.4. Molecular identification of selected Streptomyces isolate 10	65
5.3. Production of pigment(s) by Streptomycetes isolate using different media.	67
5.3.1. Optimization the pigment production using different carbon sources	68
5.3.2. Optimization the pigment production using different nitrogen sources	69
5.3.3. Production of different pigments using broth pigmented media	71
5.4. Physico-chemical properties of dyes	72
5.4.1. Elemental Analysis	72

5.4.2. Spectroscopic Analysis	73
5.5. Application of Nanotechnology for enhancement of antimicrobial activity of produced pigments	73
5.5.1. Microbial synthesis and characterization of silver nanoparticles	73
5.5.2. Modification of produced pigment using silver nanoparticles	74
5.5.2.1. Antimicrobial activity of pigments.	74
5.5.2.2. Minimum inhibitory concentration (MIC) of pigments	75
5.5.2.3. Statistical analysis	76
5.6. Dyeing experiment	76
5.6.1. Determination of λ max of the dye components	78
5.6.2. Color strength	78
6.5.3. CIEL*a*b*value	78
5.6.4. Fastness testing	79
6. RESULTS AND DISCUSSION	81
6.1. Isolation and screening of actinobacteria isolates	81
6.2. Identification of the pigmented isolate 10	86

i. Spore morphology and Spore surface characterization by scanning electron microscope.	87
ii. Molecular identification of the pigmented isolate10	89
6.3. Production of pigment(s) by Streptomyces torulosus using different media	93
6.4. Dyeing process	97
6.5. Optimization of pigment production using different carbon sources	99
6.5.1 Yeast malt medium (M1)	99
6.5.2 Tyrosine medium (M3)	101
6.5.3. Glycerol asparagine medium (M6)	103
6.6. Optimization of pigment production using different nitrogen sources	105
6.6.1. Yeast malt medium	105
6.6.2. Tyrosine medium	107
6.6.3. Glycerol aspargine medium	109
6.7. Change of pH during pigments production in different media	113
6.8. Antimicrobial activity of natural pigment(s) produced by <i>Streptomyces torulosus</i>	115
6.9. Dyeing process of natural pigments produced by <i>Streptomyces torulosus</i>	117

6.9.1. Evaluation and Measurement of Colour on Fabric	121
6.10. Identification of dyes	127
6.10.1. Elemental Analysis	127
6.10.2. Spectroscopic Analysis	128
6.10.2.1. Ultraviolet (UV) Spectroscopic Analysis	129
6.10.2.2. Infrared spectroscopy (IR)	133
6.11. Application of Nanotechnology to enhance the properties of produced pigments	137
6.11.1. Microbial synthesis and characterization of silver nanoparticles.	138
6.11.2. Antimicrobial activity of silver nanoparticles.	140
6.11.3. Enhancing of antimicrobial activity for produced dyes	143
6.11.3.1. Antimicrobial activity for pigments enriched with silver nanoparticles	144
6.11.3.2. Antimicrobial activity of the dyed fabrics	150
6 11 3 3 Minimum inhibition concentration	158

6.11.3.4. Textiles dyeing using different pigments produced by Streptomyces torulosus enhanced by silver nanoparticles	160
6.11.3.5. Evaluation and Measurement of Colour on Fabric	165
7- CONCLUSION	173
8- SUMMARY	174
9- REFERENCES	182
ARABIC SUMMARY	
ARABIC ABSTRACT	