STUDY OF GLUCAGON LIKE PEPTIDE -1 IN PATIENTS WITH ISCHEMIC HEART DISEASE

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Bolis Azmy Bolis Khames M.B., B.CH

Supervised by

Prof. Dr. Nermin Ahmed Sheriba

Professor of Internal Medicine & Endocrinology Faculty of Medicine – Ain Shams University

Dr. Salwa Sedik Hosny

Assistant Professor of Internal Medicine L Endocrinology Faculty of Medicine – Ain Shams University

Dr. Matta Makram Anees

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2011

دراسة البروتين المشابه لهرمون الجلوكاجون - ١ في مرضى قصور الشريان التاجي

رسالة

مقدمة من الطبيب/ بولس عزمى بولس بكالوريوس الطب والجراحة

توطئه للحصول على درجة الماجستير في الباطنة العامة

تحت إشراف
الأستاذ الدكتور / نرمين أحمد شريبة
استاذ الباطنة العامة والغدد الصماء
كلية الطب – جامعة عين شمس
الأستاذ الدكتور/ سلوى صديق حسنى
أستاذ مساعد الباطنة العامة والغدد الصماء
كلية الطب – جامعة عين شمس
كلية الطب – جامعة عين شمس
الدكتور / متى مكرم أنيس
مدرس الباطنة العامة والغدد الصماء
مدرس الباطنة العامة والغدد الصماء

كلية الطب جامعة عين شمس ٢٠١١ Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreated by L cells of the GIT in response to nutrient intake and plays a major role in glucose homeostasis by stimulating insulin secretion, suppressing glucagon secretion, inhibiting gastric emptying, and reducing appetite and food intake. This hormone exerts its effects through interaction with G-protein coupled receptors. The GLP-1 receptor is widely expressed throughout the body (a- and P-cells in the islets of pancreas, other parts of the gastrointestinal tract, central and peripheral nervous systems, heart, kidney, and the lung).

In patients with type 2 diabetes mellitus, the incretin effect is reduced or even absent due to significant, reduction in meal-stimulated levels of GLP-1. Therapeutic efforts have been focused on the development of GLP-1 receptor agonists, which would appear to be ideal therapeutic agents for use in patient with type 2 diabetes. Incretin mimetics, exenatide and liraglutide, which are GLP-1 receptor agonists resistant to DPP- IV degradation, and the DPP-IV inhibitors (the gliptins), which potentiate the effect of the endogenously secreted incretin hormones by competitively inhibiting the enzyme responsible for their degradation

The incretin mimitics have effects extending beyond their

ACKNOWLEDGMENTS

First and above all, thanks to **ALLAH**, the source of all knowledge and wisdom who enabled me to complete this work.

I wish to express my deep and sincere gratitude to **Prof. Dr. Nermin Ahmed Sheriba**, Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University. Her wide knowledge and logical way of thinking have been of great value for me. Her understanding, encouraging and personal guidance have provided a good basis for the present study. No words of thanks could ever express my feelings towards her extreme support.

I am deeply grateful to **Prof. Dr. Salwa Sedik Hosny**, Assistant Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for her inspiration, sincere care, follow up, encouragement and important support throughout this work., her sincere directions were of great value in this research.

I wish to express my warm and sincere thanks to **Dr. Matta Makram Anees**, Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for his kind help in this research.

Also I wish to express many thanks to **Dr. Maram Mohammed Maher** Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for her kind support, instructions and help.

Lastly I would like to extend my warm thanks to **Dr. Magdy Abbas Abdel Aziz** Assistant consultant of biochemistry
Ain Shams University Hospitals, for his hard work in laboratory investigations of this work.

CONTENTS

	.
	Page
Acknowledgment	I
List of abbreviations	III
List of figures	VII
List of tables	IX
Protocol	XI
Review of literature	
Chapter 1:	
Glucagons like peptide – 1	1
Chapter 2:	
Incretins and cardiovascular diseases	40
Chapter 3:	
Ischemic heart disease risk factors	80
Subjects and methods	111
Results	121
Discussion	142
Summary and conclusions	152
Recommendations	155
References	156
Arabic summary	

List of Abbreviations

ACTH	Adrenocorticotropin hormone.
	<u> </u>
ACCORD	
	diabetes
ADA	American diabetes association.
AGEs	Advanced glycation end products
AHA	American heart association
AMI	Acute myocardial infarction.
AMP	Adenosine monophosphate.
AMPK	AMP-activated protein kinase.
Ach	Acetylcholine
ANOVA	Analysis of variance
ATP	Adenosine triphosphate.
BMI	Body mass index.
CABG	Coronary artery bypass graft.
CAD	Coronary artery disease.
cAMP	Cyclic AMP.
cAMP-GEFII	cAMP-regulated guanine nucleotide exchange
	factor II.
CHF	Congestive heart failure.
CD26	Dipeptidyl peptidase IV.
CVA	Cerebrovascular accident.
CHF	Congestive heart failure.
Chol.	Cholesterol.
CRH	Corticotrophin-releasing hormone.
CRP	C-reactive protein
CYP	Cytochrome pathway
CV	Cardiovascular.
CVD	Cardiovascular disease.

CPAP	Continous positive airway pressure
CHD	Coronary heart disease.
D DM	Duration of diabetes.
DSE	Dobutamine stress echocardiography
Dias. BP	Diastolic blood pressure.
DNA	Deoxyribonucleic acid.
DPP-IV	Dipeptidyl peptidase IV.
eNOS	Endogenous nitric oxide synthase
ECG	Electrocardiogram.
ЕСНО	Echocardiogram.
EF	Ejection fraction.
ELIZA	Enzyme linked immunosorbant assay.
Epac2	cAMP-regulated guanine nucleotide exchange
	factor II.
ED	Endothelial dysfunction.
FBG	Fasting blood glucose.
FMD	Flow mediated dilatation.
FDA	FOOD and drug association
GIP	Gastric inhibitory polypeptide / Glucose
	dependent insulinotropic polypeptide.
GLP-1	Glucagon like peptide-1.
GLP-1r	GLP-1 receptors.
GLP-2	Glucagon like peptide-2.
GPCR-kinase	G-protein-coupled receptor kinase.
GRP	Gastrin releasing peptide.
GRPP	Glicentin related pancreatic polypeptide.
GLUT	Glucose transporter.
HbA _{1C}	Glycated hemoglobin / hemoglobin A _{1C} .
HDL	High density lipoprotein.
His.	Histidine
HF	Heart failure
HR	Hazard ratio.
IL-1	Interleukin-1.

IP-1	Intervening peptide-1
IP-2	Intervening peptide-2
IR	Insulin resistance.
IDF	International diabetes foundation.
ICAM	Intracellular adhesion molecule.
LDL	Low density lipoprotein.
LV	Left ventricle.
LVEF	left ventricular ejection fraction.
MAPK	Mitogen-activated protein kinase.
mRNA	Messenger ribonucleic acid.
MPGF	Major proglucagon fragment.
MDP-1	Monocyte chemotactic protein-1
NMR	Neuclear magnetic resonance.
NCEP	National cholesterol education programme
NO	Nitric oxide
NPV	Negative peridictive value.
NYHA	New York heart association.
OSA	Obstructive sleep apnea
OGTT	Oral glucose tolerance test
P	P-value / probability
PAI	Plasminogen activator inhibitor
PG	proglucagon
PCI	Percautanous coronary intervention
PK	Protein kinase
PERISCOPE	Pioglitazone effect on regression of
	intravascular sonographic coronary
	obstruction prospective evaluation
PC	Proglucagon convertase
PKA	Protein kinase A.
PPAR	Peroxisome proliferators activator receptor.
PVN	Paraventricular nucleus.
PPV	Positive peridictive value
PYY	Peptide YY / Peptide Tyrosine Tyrosine.

r	Pearson's correlation coefficient.	
RAS	Renin angiotensin aldosterone system.	
RECORD	Rosiglitazone Evaluated for Cardiac	
	Outcomes and Regulation of Glycemia in	
	Diabetes.	
RNA	Ribonucleic acid.	
RAGEs	Receptors of advanced glycation end products	
ROS	Reactive oxygen species.	
ROC	Receiver operator characteristic.	
Sc	Subcutaneous.	
SD	Stander deviation.	
Sig.	Significance.	
SNS	Sympathetic nervous system.	
SNP	Single nucleotide polymorphism.	
SPSS	Statistical program for social science.	
SR	Sarcoplasmic reticulum.	
SS	Somatostatin.	
SAS	Sleep apnea syndrome	
Sys. BP	Systolic blood pressure.	
T2DM	Type 2 diabetes mellitus.	
TG	Triglycerides.	
TF	Tissue factor	
TNF	Tumor necrosis factor.	
TZD	Thiazolidinediones	
UKPDS	United kingdom prospective diabetes study	
VSMC	Vascular smooth muscle cells	
VLDL	Very low density lipoproteins	
VP	Valine pyrrolide	
\mathbf{X}^2	Chi-square test.	

List of Figures

A. <u>Figures</u>	of the Review:	Page
Figure (1)	Alternative posttranslational processing of proglucagon and the transcription of proglucagon gene	5
Figure (2)	2D-NMR structure of GLP-1	9
Figure (3)	Structure of L cell	10
Figure (4)	Factors involved in the control of the activity of L cells	13
Figure (5)	Plasma concentrations of insulin, GLP-1 (total) and GIP (total) during the day time in healthy subjects	15
Figure (6)	GLP-1 and glucose signaling	19
Figure (7)	Ultracellular actions of GLP-1 that lead to stimulation of insulin secretion	23
Figure (8)	The neural pathway of the action of GLP-1	28
Figure (9)	Structure of native GLP-1, exenatide, liraglutide, sitagliptin and vildagliptin	39
Figure (10)	Proposed antihyperglycemic strategy in T2DM and CAD patient	60
Figure (11)	Propsed antihyperglycemic strategy in T2DM and HF patient	64
Figure (12)	GLP Curve	115

List of Figures (Cont.)

B. Figures of the Results:		Page
Figure (1)	Comparison between mean systolic and diastolic blood pressure among different groups	133
Figure (2)	Sex distribution in all studied cases	134
Figure (3)	Comparison of mean and range of GLP-1 in different groups	134
Figure (4)	Comparison of mean and range of EF in different studied groups	135
Figure (5)	Comparison between diabetics and non diabetics as regard GLP-1	135
Figure (6)	Comparison between cases and controls as regard GLP-1	136
Figure (7)	Comparison between ischemic cases and controls as regard GLP1	136
Figure (8)	Correlation between fasting GLP-1 and ejection fraction in group-1	137
Figure (9)	Correlation between fasting GLP-1 and HbA _{1C} in group -1	137
Figure (10)	Correlation between fasting GLP-1 and LDL in group-1	138
Figure (11)	Correlation between fasting GLP-1 and duration of diabetes in group 1	138
Figure (12)	Correlation between fasting GLP-1 and 2HPP glucose in group 1	139
Figure (13)	Correlation between fasting GLP-1 and TG in group 2	139
Figure (14)	Correlation between fasting GLP-1 and HBA1c in group 3	140
Figure (15)	ROC curve for overall predictivity of GLP1	140

List of Tables

A. <u>Tables</u>	of the Review:	Page
Table (1)	Anti-Hyperglycemic Medications in Type 2 Diabetes	48
Table (2)	Classification of ischemic heart disease Risk factors	82
Table (3)	Classification of arterial blood pressure according to BHS	86
Table (4)	The risk increases for diseases related to obesity as BMI increases	90
Table (5)	Drug therapy treatment levels goal of LDL in adults	100
B. <u>Tables</u> Table (1)	of the resultes: Comparison between the studied groups as regard clinical data	123
Table (2)	Comparison between the studied groups as regard laboratory data	124
Table (3)	Comparison between the studied groups as regard GLP1	125
Table (4)	Comparison between the studied groups as regard Echo (EF)	126
Table (5)	Comparison between diabetic and non diabetic group as regard GLP-1	126

List of Tables (Cont.)

		Page
Table (6)	Comparison between total cases and controls as regard GLP1	127
Table (7)	Comparison between ischemic cases and controls as regard GLP1	127
Table (8)	Correlation between GLP1 versus other variables among group- 1	128
Table (9)	Correlation between GLP1 versus other variables among group 2	129
Table (10)	Correlation between GLP1 versus other variables among group 3	130
Table (11)	Correlation between GLP1 versus other variables among group 4	131
Table (12)	Comparison between GLP1 versus different variables by linear regression among cases	132
Table (13)	Best cut off, sensitivity, specificity, PPV and NPV of GLP1 in ischemic cases	133

Introduction

Glucagon-like peptide-1(GLP-1), is a gut incretin hormone that stimulates insulin secretion and also activates anti apoptotic signaling pathways in pancreatic cells (*Bose et al.*, 2005). Glucagon-like peptide-1 has been shown to exert a direct cytoprotective effect via inhibition of apoptosis directly in target cells expressing the GLP-1 receptors (*Redondo et al.*, 2003). It has been demonstrated that GLP-1 has receptors in the heart through which it exerts physiologically important effects on cardiac function (*Holst*, 2007). In the resting state, GLP-1 may inhibit the myocardial contractility, but after cardiac injury GLP-1 has constantly increased myocardial performance. It enhances insulin secretion and may enhances myocardial performance via the combined effects of enhanced insulin secretion and stimulation of p70sb kinase pathway (*Zarich*, 2005).

GLP-1 has been shown to markedly reduce post prandial levels of glucose, triglycerides and free fatty acids and increase HDL levels in diabetics and non diabetic subjects. With this ability to reduce postprandial glucose excursion, it could be a promising agent for improving cardiovascular prognosis (*Riddle and Drucker*, 2006).

It is important to demonstrate that the effects of GLP-1 are not restricted to the pancreas and the gastrointestinal tract. In patients with heart failure, GLP-1 when given intravenously has been shown to improve the ejection fraction and regional wall scores trough its cardiac receptors, dilate the pulmonary artery and has a diuretic effect (*Sokos et al.*, 2006). Patients with type 2 diabetes mellitus are considered at high risk for cardiovascular disease. (*Song and Hardisty*, 2008) and are characterized by a deficiency of GLP-1 (*Nauck et al.*, 2004).

Whether the GLP-1 deficiency is the link between type 2 diabetes mellitus and the development of ischaemic heart disease in need for further study.

Aim of the work

To measure the plasma levels of GLP-1 in patients with ischemic heart disease, both those with type 2 diabetes mellitus and those who are non- diabetic and to assess the role of GLP-1 in the development of ischemic heart disease.

Subjects and Methods

• Subjects

This study will be conducted on 54 subjects who will be selected from the outpatient clinic of cardiology department and the endocrinology unit of internal medicine department, Ain