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Summary:

The educational jet engine "AMT Olympus HP" is employed as a case study to
investigate different control algorithms. Different fuel controllers are investigated
with the objective of minimizing the acceleration and deceleration times while
maintaining safe operation limits. The controllers design parameters are selected to
cope with varying inputs along the operating line throughout the wide envelop of
engine operating conditions. Three types of controller are compared. The classical
PID with constant gains, fuzzy logic classical PD controller and an adaptive fuzzy
logic PD controller with novel tuning of scaling factor according to selected fuzzy
rules. Results show that, generally, the new developed adaptive fuzzy controller has
superior time response characteristics among other controllers during both
acceleration and deceleration.
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Nomenclature

A: Area

AFL: Adaptive Fuzzy Logic

BFLC: Basic Fuzzy Logic Controller
Cp: nozzle discharge coefficient

Cp: Specific heat at constant pressure
DHTCC: Compressor Work function
DHTCT: Turbine Work Function

E: Differential Error

EGT: Exhaust gas Temperature

FLC: Fuzzy Logic Controller

f: fuel to air ratio

F: Thrust

go: gravitational acceleration =9.81 m/s?
h: Enthalpy

H: Altitude

hpr: Fuel heating value

I;: Rotor inertia

L: Volume length

m: Mass

MFP: Mass Flow Parameter

m: Mass flow rate

N: engine rotational speed

Ny,: Turbine work

Ny, : Compressor work

viii



Nq: Engine excess torque

NPR: Nozzle Pressure ratio

NGVs: Nozzle Guide Vanes

P: Pressure

POS: Percentage overshoot

R: air constant

SLS: Sea Level Static

t: time

ts: settling time

T: Temperature

TFF: turbine flow function

TIT: Turbine Inlet Temperature

V: volume

Z: the ratio of pressure ratio along speed line
n: Pressure Ratio Or Pressure Losses
n: Component Efficiency

v: Specific heats ratio

7: Temperature ratio

Subscripts:

b: Combustion Chamber (burner)
B: Base value

C: compressor

cor: Corrected

f: fuel

GG: Gas Generator

i: Station number



in: inlet condition

i: initial

isen: Isentropic

m: Mechanical

n: Nozzle

out: outlet condition
rel: relative

ref: reference

s: Static

t: Total

T: turbine



Abstract

Aircraft engines performance is ever continuously more demanding.
Preserving jet engine operating limits; during dynamic operation, is a main objective
of engine controller. This task has become more challenging and requires innovative
control methods. This thesis focuses on the development of adaptive fuzzy controller
for a micro-turbojet engine. The educational jet engine "AMT Olympus HP" is
employed as a case study to investigate different control algorithms, such that they
can be subsequently experimentally verified.

Nonlinear computer simulation of engine steady state and dynamic
performance facilitates the design and development of new control systems.
Performance maps of the engine components are employed to generate the off design
operating lines, representing the steady state operation at different flight conditions. In
this study the operating line is generated using a balance technique. It assumes a set of
engine state variables and obtains corresponding imbalance errors. Subsequently,
errors-variables sensitivity matrix is established, and used to modify the state
variables to eliminate the balance errors iteratively.

A digital dynamic simulation is constructed to investigate engine variables
response to time variations of fuel inputs. The model assumes each engine component
to adhere to its steady state characteristics followed by a lumped volume. Through the
volume the transient continuity, energy and momentum equations are solved to
provide the dynamic part of the response.

Different fuel controllers are investigated with the objective of minimizing the
acceleration and deceleration times while maintaining safe operation limits. The
controllers design parameters are selected to cope with varying inputs along the
operating line throughout the wide envelop of engine operating conditions. Three
types of controller are compared. The classical PID with constant gains, fuzzy logic
classical PD controller and an adaptive fuzzy logic PD controller with novel tuning of
scaling factor according to selected fuzzy rules.

A comparison is held between the three controllers. The rise time, settling time
and percentage overshoot are evaluated for speed response during acceleration from
minimum speed to various operating points along the operating line, and during
deceleration from maximum speed to various operating points along the operating
line. These calculations are made for each controller at different flight operating
conditions.

Results show that, the new developed adaptive fuzzy controller has superior
time response characteristics over other controllers during both acceleration and
deceleration. The classical fuzzy logic PD controller comes next with moderate
differences. The PID controller has long settling time and long rise time that is not
experienced by the fuzzy controllers.
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