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Abstract 

Aircraft engines performance is ever continuously more demanding. 

Preserving jet engine operating limits; during dynamic operation, is a main objective 

of engine controller. This task has become more challenging and requires innovative 

control methods. This thesis focuses on the development of adaptive fuzzy controller 

for a micro-turbojet engine. The educational jet engine "AMT Olympus HP" is 

employed as a case study to investigate different control algorithms, such that they 

can be subsequently experimentally verified. 

Nonlinear computer simulation of engine steady state and dynamic 

performance facilitates the design and development of new control systems. 

Performance maps of the engine components are employed to generate the off design 

operating lines, representing the steady state operation at different flight conditions. In 

this study the operating line is generated using a balance technique. It assumes a set of 

engine state variables and obtains corresponding imbalance errors. Subsequently, 

errors-variables sensitivity matrix is established, and used to modify the state 

variables to eliminate the balance errors iteratively.  

A digital dynamic simulation is constructed to investigate engine variables 

response to time variations of fuel inputs. The model assumes each engine component 

to adhere to its steady state characteristics followed by a lumped volume. Through the 

volume the transient continuity, energy and momentum equations are solved to 

provide the dynamic part of the response. 

Different fuel controllers are investigated with the objective of minimizing the 

acceleration and deceleration times while maintaining safe operation limits. The 

controllers design parameters are selected to cope with varying inputs along the 

operating line throughout the wide envelop of engine operating conditions. Three 

types of controller are compared. The classical PID with constant gains, fuzzy logic 

classical PD controller and an adaptive fuzzy logic PD controller with novel tuning of 

scaling factor according to selected fuzzy rules. 

A comparison is held between the three controllers. The rise time, settling time 

and percentage overshoot are evaluated for speed response during acceleration from 

minimum speed to various operating points along the operating line, and during 

deceleration from maximum speed to various operating points along the operating 

line. These calculations are made for each controller at different flight operating 

conditions.  

Results show that, the new developed adaptive fuzzy controller has superior 

time response characteristics over other controllers during both acceleration and 

deceleration. The classical fuzzy logic PD controller comes next with moderate 

differences. The PID controller has long settling time and long rise time that is not 

experienced by the fuzzy controllers. 


