TECHNICAL PACKAGES OF NUTRITION AS A TOOL TO USE ON FARM FEED RESOURSES UNDER MIXED PRODUCTION SYSTEM

By

SOLIMAN ELSAYED SOLIMAN ATWA

B.Sc. Agric. Sci. (Animal Production), Ain Shams University, 1999

A Thesis Submitted in Partial Fulfillment Of The requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

TECHNICAL PACKAGES OF NUTRITION AS A TOOL TO USE ON FARM FEED RESOURSES UNDER MIXED PRODUCTION SYSTEM

By

SOLIMAN ELSAYED SOLIMAN ATWA

B.Sc. Agric. Sci. (Animal Production), Ain Shams University, 1999

This thesis for M.Sc. degree has been approved by:
Dr. Abdel-Rahman Mahmoud Abdel-Gawad Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Cairo University
Dr. Soliman Mohamed Soliman Abdelmawla Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Dr. Hamdy Mohamed Ahmed El-Sayed Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Date of Examination: / /

TECHNICAL PACKAGES OF NUTRITION AS A TOOL TO USE ON FARM FEED RESOURSES UNDER MIXED PRODUCTION SYSTEM

By

SOLIMAN ELSAYED SOLIMAN ATWA

B.Sc. Agric. Sci. (Animal Production), Ain Shams University, 1999

Under the supervision of:

Dr. Hamdy Mohamed Ahmed El-Sayed

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Hussin Saad Soliman

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abdel-Aziz El-Wardani (late)

Chief Researcher of Animal husbandry, Anim. Prod. Res. Institute

ABSTRACT

Soliman Elsayed Soliman Atwa. Technical Packages of Nutrition as a Tool to Use on Farm Feed Resources Under Mixed Production System. Unpublished M.Sc. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2018

A cross sectional survey was conducted in four governorates namely Sharkia, Menoufia, El-Fayoum and Menia. The survey covered 200 smallholders practicing animal farming under crop-livestock production system. The required data was collected through semi-structured interview with questionnaire. This study aimed at characterizing nutritional packages adoption by using the system approach. The socio-economic analysis revealed that the illiteracy level was higher (42%) in Menia governorate as compared to others. The majority of the respondents (49%) working as farmers in their lands. Daily managerial practices depend mainly on the family members; Family labor represented the highest percentage being 88%, 92%, 80%, and 86% for Sharkia, Menoufia, El-Fayoum, and Menia respectively. farmers who used silage, hay, and the untraditional green forages, have the highest animal numbers, either from indigenous cows, crossbred cows, buffaloes, sheep, goats, and donkeies compared to those who do not use the nutritional packages (non-adopters). Adopters of silage, hay, and untraditional green forages had the highest percentage of dairy, heifer, fattening, and growing for crossbred cows and buffaloes compared to non-adopters. Sharkia governorate had the highest number and consequently percentage of animals followed by El-Fayoum governorate. Silage adopters recorded the highest significant (P<0.05) value of daily milk yield (DMY) and total milk yield (TMY) for indigenous cow, crossbred cow and buffalo as compared to non-adopters. Calving interval significantly (P<0.05) increased for all dairy animals (indigenous cows, crossbred cows, and buffaloes) under non-adopters of nutritional packages being 387, 388.57, and 402 days for the aforementioned animals, respectively. Dairy animals reared under the Nile Delta had the

highest significant DMY versus those under the Middle Egypt, where it was 4.05, 8.52, and 7.29 kg vs 3.76, 7.74, and 6.48 kg for indigenous cows, crossbred cows, and buffaloes, respectively. In conclusion, adopters of nutritional packages had the highest animal percent and recorded the highest productivity compared to non-adopters.

ACKNOLOWDGMENT

I thank **Allah**, the most gracious, most beneficent most merciful for the help and guidance to achieve goals and them possible.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Professor Dr. Hamdy M. A. El-Sayed**, Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University for his kind and close supervision, valuable assistance, guidance through the course of the study.

Many thanks are also due to **Professor Dr. Mohamed Abd Elaziz El-Wardani** Head Researcher of Animal husbandry, Anim. Prod. Res. Institute (late) to help him to choose the subject ,work questionnaire, field testing, overcome the various obstacles, urged him to continue studying, reading data and interpretation. We hope that God will overcome his evil and dwell in his spaciousness and make this message in the balance of his good deeds

Deep thanks are due to **Professor Dr. Hussin Saad Soliman** Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University for his continuous help, guidance and patience throughout the course of this work.

Special thanks to **Dr. Hussein Al-Nubi**, Director of the Institute of Animal Production Research, for his review of parts of the leter linguistically.

Thank you to my colleagues at the Malawi Research Station for helping me compile the study questionnaire data.

Thank you to my **wife** for her cooperation and her support of my circumstances and Finally, deepest appreciation and sincere gratefulness are due to **my father, mother, brother and sisters** for their encouragement and moral support during all my life.

CONTENTS

	Page
LIST OF TABLES	v
LIST OF FIGURES	viii
ABBREVIATIONS	ix
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Livestock Farming systems in Egypt:	3
1.1. Classification of Egypt's livestock production systems	5
1.1.1. Extensive production system	7
1.1.1.1. Pastroralism production system	7
1.1.1.2. Agro-pastoral production system	8
1.1.1.3. Peri-urban subsistence production system	9
1.1.2. Semi-intensive production system	9
1.1.2.1. Mixed production system	10
1.1.2. 2. Perennial crop/livestock integrated system	11
1.1.3. Intensive production system	12
1.1.3.1. Peri-urban production system	13
1.1.3.2. Modern production system	14
2. Characterization of the current crop/livestock production	15
system	
2.1. Total milk yield	19
2.2. Daily milk yield	20
2.3. Lactation period	20
2.4. Calving Interval	20
2.5. Herd dynamics	21
2.6. Herd composition	24
2.7. Herd structure	25
2.8. Herd dynamic	26
2.9. Herd size	26
2.10. Cropping system	27
2.11. Milk utilization	29

	Page
2.12. Housing systems	30
2.13. Managerial practice	30
2.14. Feeding system in real current situation	31
3. Adoption	34
4. Feeding technical packages	35
MATERIALS AND METHODS	40
1. Description of the study area	40
1.1. Sharkia Governorate	40
1.2. Menoufia Governorate	41
1.3. El-Fayoum Governorate	41
1.4. Menia Governorate	42
2. Sampling techniques	42
3. Collected data	42
3.1. Basic Information	43
3.2. Crop production	43
3.3.Animal production	43
3.4. Herd productivity included	43
3.5. Technical packages of nutrition	44
4. Statistical analysis	44
RESULTS AND DISCUSSION	45
1.The main features of the mixed production system	45
1.1. Description of mixed production system:	45
1.2. Social characteristics of the householders	45
1.3. Cultivated Land	51
1.3.1. Quantity of crops residuals	56
1.3.2 The various purposes for crop residues usage	59
2. Adoption of nutritional packages	62
2.1. Adoption strategy of nutritional packages	62
2.2. The extent of nutritional packages adoption by the	64
respondents	
2.3. Frequency of nutritional packages	66

	Page
3. Herd composition and structure	68
3.1. Herd composition	68
3.2. Herd structure	72
4. Impact of nutritional packages adoption on feeding schedule	77
4.1. Impact of nutritional packages adoption on feeding schedule	77
during winter season	
4.1.1. Impact of nutritional packages adoption on feeding	77
schedule during winter season for indigenous cow	
4.1.2. Impact of nutritional packages adoption on feeding	81
schedule during winter season for crossbred dairy cow	
4.1.3. Impact of nutritional packages adoption on feeding	86
schedule during winter season for buffaloes	
4.2. Impact of nutritional packages adoption on feeding schedule	90
during summer season	
4.2.1. Impact of nutritional packages adoption on feeding	90
schedule during summer season for indigenous dairy cow	
4.2.2. Impact of nutritional packages adoption on feeding	97
schedule during summer season for crossbred dairy cow	
4.2.3. Impact of nutritional packages adoption on feeding	102
schedule during summer season for buffaloes	
5. Impact of adoption on milk and beef productivity	107
5.1. Milk production	107
5.2. Beef production	113
SUMMERY AND CONCLUSION	118
REFERENCES	125
APPENDIX	141
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Main features of the different types of production	19
	systems	40
2	Socio-economic analysis of the households under the	49
	studied governorates	
3	Socio-economic analysis of the households under the	50
	studied regions	
4	The cropping pattern in winter and summer season	54
	under the studied governorates	
5	The cropping pattern in winter and summer seasons	55
	under the studied regions	
6	Types and quantity (Q) of crops residues (kg) during	57
	winter and summer seasons under the studied	
	governorates	
7	Types and quantity (Q) of crop residuals (kg) during	59
	winter and summer seasons under the studied regions	
8	Utilization of crops residues under the studied	61
	governorates and regions	
9	Adoption status of nutritional packages under the	64
	studied regions and governorates	
10	Frequency distribution of nutritional packages	67
	adopting by the farmers (N=167)	0,
11	Herd composition under the adopters of nutritional	69
11	packages and non-adopters	0)
12	Herd composition under the different governorates	71
14		/ 1
12	and regions	72
13	Herd structure under the adopters of nutritional	73
1.4	packages and non-adaptors	
14	Herd structure under the studied governorates	75 75
15	Herd structure under the studied regions	76

Table No.		Page
16	Lest square mean \pm standard error of winter feed	78
	intake for indigenous dairy and heifer cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages	
17	Lest square mean \pm standard error of winter feed	80
	intake for indigenous fattening and growing cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages.	
18	Lest square mean \pm standard error of winter feed	82
	intake for crossbred dairy and heifer cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages.	
19	Lest square mean ± standard error of winter feed	85
	intake for crossbred fattening and growing cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages.	
20	Lest square mean ± standard error of winter feed	87
	intake for buffalo dairy and heifer (kg/animal/day)	
	affected by regions, governorates and nutritional	
	packages	
21	Lest square mean ± standard error of winter feed	89
	intake for fattening and growing buffalo	
	(kg/animal/day) affected by regions, governorates and	
22	nutritional packages	0.2
22	Lest square mean ± standard error of summer feed	92
	intake for indigenous dairy and heifer cow	
	(kg/animal/day) affected by regions, governorates and	
22	nutritional packages.	05
23	Lest square mean ± standard error of summer feed intake for indigenous fottoning and growing cow	95
	intake for indigenous fattening and growing cow	
	(kg/animal/day) affected by regions, governorates and	

Table No.		Page
	nutritional packages.	
24	Lest square mean ± standard error of summer feed	99
	intake for crossbred dairy and heifer cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages	
25	Lest square mean ± standard error of summer feed	101
	intake for crossbred fattening and growing cow	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages	
26	Lest square mean ± standard error of summer feed	104
	intake for buffalo dairy and heifer (kg/animal/day)	
	affected by regions, governorates and nutritional	
	packages	
27	Lest square mean ± standard error of summer feed	106
	intake for buffalo fattening and growing	
	(kg/animal/day) affected by regions, governorates and	
	nutritional packages.	
28	Lest square mean ± standard error of Productive and	109
	reproductive traits of dairy animals for adopters of	
	nutritional packages and non-adopters	
29	Lest square mean ± standard error of Productive and	111
	reproductive traits of dairy animals under the studied	
	governorates	
30	Lest square mean ± standard error of Productive and	113
	reproductive traits of dairy animals under the studied	
	regions	
31	Lest square mean \pm standard error of fattening traits	115
	of beef animals under adopters of nutritional packages	110
	and non-adopters	
32	Lest square mean ± standard error of fattening traits	116
- —	of beef animals under the studied governorates	- 3

Table No. Page

33 Lest square mean \pm standard error of fattening traits 117 of beef animals under the studied regions

VIII

LIST OF FIGURES

Fig. No.		Page
1	Schematic representation of the classification of animal production systems in Egypt, Tabana (2000)	6
2	The map of Egypt governorates	40