

PLANNING OF CONSTRUCTION LABORS EMERGENCY EVACUATION USING BIM AND COMPUTER SIMULATION

By

ISMAIL ZAKARIA IBRAHIM AL DAOOR

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

PLANNING OF CONSTRUCTION LABORS EMERGENCY EVACUATION USING BIM AND COMPUTER SIMULATION

By Ismail Zakaria Ibrahim Al Daoor

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Mohamed Mahdy Marzouk

Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PLANNING OF CONSTRUCTION LABORS EMERGENCY EVACUATION USING BIM AND COMPUTER SIMULATION

By Ismail Zakaria Ibrahim Al Daoor

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Ismail Zakaria Ibrahim Al Daoor

Date of Birth: 21 /12 /1984 **Nationality:** PALESTINIAN

E-mail: iseldaour@hotmail.com

Phone: +97-599855375

Address: 87 Al-Saftawi Street-Gaza-Palestine

Registration Date: 01 / 10 / 2012 **Awarding Date:**/..../....

Degree: Doctor of Philosophy

Department: Structure Engineering Department

Supervisors: Prof. Mohamed Mahdy Marzouk

Examiners: Prof. Mohamed Mahdy Marzouk – Cairo University (Main Advisor)

Prof. Emad Elsaid Elbeltagi- Mansoura University

Dr. Mohamed Abd El Latif Bakry - Social Development Fund

Title of Thesis:

Planning Of Construction Labors Emergency Evacuation Using BIM And Computer Simulation

Key Words:

Building Information Modeling (BIM); Labors Evacuation Planning; Computer Simulation; Construction Sites

Summary:

Evacuation of labors during emergency situations is a crucial aspect when considering construction project planning. To support emergency evacuation planning, it is critical to estimate labor evacuation times during project execution. This research presents a framework that aids in planning of construction labors emergency evacuation using building information modeling (BIM) and computer simulation. 4-Dimention models are created using BIM in order to generate construction project scheduling to visualize evacuation of labors in emergency situations at any time during project execution. Computer simulation is adopted by applying agent-based simulation to model the behavior of labors in evacuation situations. MassMotion simulation platform is utilized to implement agent-based simulation. Ranking and Selection statistical procedures are used to determine the best simulated model configuration among the considered four alternatives. Multi Criteria Decision Making (MCDM) is applied to help in selecting the suitable construction alternative. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used to identify the best construction method scenario taking into consideration three main criteria which are: construction total cost, execution time, and evacuation time of labors. The proposed framework is examined within the context of a case study that considers evacuation of labors during the construction of building in Egyptian social housing national project. This framework can be used as a decision support tool that aids contractors and safety managers to select the appropriate construction alternatives.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Allah for what I am and for everything I have.

I am grateful to my direct supervisor Prof. Dr. Mohamed Marzouk for his professional advice, useful guidance, and excellent support through all stages of preparing this thesis. Without his insights, knowledge and experiences that provided me direction, I would never have completed this thesis.

I would like to thank Dr. Elshimaa Elgendi, Eng. Mahmoud Samy, Eng. Mohamed Refat and Dr. Dalia Al Mehrez for their encouragement and support in various parts of the thesis.

I would like to thank my parents Zakaria and Rehab, my brothers Yahya, Yousef, Younes, and Mohamed, and my sisters Kamila, Mariyam Layla, Aya and Ayat. Also, I would like to thank my uncles Dr. Zaki and Dr. Jabr. Their continuous love and support have been my major motivation in the timely completion of this work. To all of them, I say thank you.

Last but not least, I would like to thank my wife, Huda for bearing with me through this long journey, for being always there at the toughest moments, and for handling the responsibilities that I missed among loads of work and studying. I wish I would be ever able to reward her.

DEDICATION

To my father and mother for their endless support

To my Brothers and my sisters for their endless and generous support

To my uncles and my family for their endless support

To my wife for her unlimited encouragement and my children Anas, Rehab, and Jood

To all of my colleagues and friends for their help and support

Ismail Z. AL Daoor

TABLE OF CONTENTS

ACKNO	WLED	GEMENTS	I	
DECLA	RATIO	N	II	
TABLE (OF CO	NTENTS	III	
LIST OF	FIGU	RES	VI	
LIST OF	TABL	ES	VIII	
LIST OF	ABBR	EVIATIONS	X	
ABSTRA	CT		XI	
CHAPTI	ER 1: II	NTRODUCTION	1	
1.1	Gener	al	1	
1.2	Proble	em Statement	1	
1.3	Resea	rch Scope	1	
1.4	Resear	Research Objectives.		
1.5	Resea	rch Methodology	2	
1.6	Thesis	organization	2	
СНАРТН	ER 2: L	ITERATURE REVIEW	4	
2.1	Gener	al	4	
2.2	Buildi	ng Information Modeling	4	
	2.2.1	Overview of BIM	4	
	2.2.2	Benefits of BIM.	5	
	2.2.3	BIM Dimensions	5	
	2.2.4	Interoperability in BIM	6	
	2.2.5	Using BIM in Evacuation.	7	
2.3	Mode	ling Using Simulation	7	
	2.3.1	Overview of Simulation Modeling	7	
	2.3.2	Simulation Methods	10	
		2.3.2.1 System Dynamic Simulation.	10	
		2.3.2.2 Discrete Event Simulation	11	
		2.3.2.3 Agent Based Simulation	11	
2.4	Evacu	ation Using Dynamics Models	11	
	2.4.1	Models Classification.	11	
	2.4.2	Cellular Automaton Models	12	

		2.4.3	Social Force Models.			
		2.4.4	Agent Based Models			
		2.4.5	Combination of Modelling Approaches.			
	2.5	Agent	Based Modelling Applications in Construction			
	2.6	Ranki	ng and Selection Procedures			
		2.6.1	Indifference-zone Selection (IZS)			
		2.6.2	Subset Selection (SS).			
		2.6.3	Rinott's Procedure.			
	2.7	Multi	Criteria Decision Making (MCDM)			
		2.7.1	Analytic Hierarchy Process.			
		2.7.2	Technique For Order Preference By Similarity to Ideal Solution			
	2.8	Summ	nary and Research Gab			
СН	APTE	ER 3: E	VACUATION MODELLING USING SIMULATION			
	3.1	Gener	ral			
	3.2		cuation Modelling			
	3.2	Spaces Representation in Evacuation Models				
		3.2.1	s Representation in Evacuation Models			
		3.2.2	Coarse Network Approach			
		3.2.3	Continuous Approach			
	3.4	Devel	oped Evacuation Models			
	3.5	Summ	ımmary			
СН	APTE	ER 4: P	ROPOSED FRAMEWORK			
	4.1	Gener	al			
	4.2		iption of Framework Components			
		4.2.1	Development of BIM Model			
		4.2.2	Construction Planning			
		4.2.3	4D Model Tools			
		4.2.4	Cost Estimation			
		4.2.5	Evacuation Model Development			
			4.2.5.1 Model Description			
			4.2.5.2 Agent characteristics			
			4.2.5.3 Walking Speed			
			4.2.5.4 Social Forces			
			4 2 5 5 Evacuation Time Points			

		4.2.5.6	Starting Positions	46
		4.2.5.7	Simulation Run	46
		4.2.5.8	Simulation Outputs	47
4.3	Summ	nary		47
СНАРТН	ER 5: C	ASE STU	TDY APPLICATION	48
5.1	Gener	al		48
5.2	Case S	Study Desc	eription	48
5.3	Projec	t Duration	Calculation	49
	5.3.1	Construc	tion Method Scenario1	51
	5.3.2	Construc	tion Method Scenario 2	54
	5.3.3	Construc	tion Method Scenario 3	57
	5.3.4	Construc	tion Method Scenario 4	59
5.4	Estima	ating Proje	ect Cost	61
5.5	Evacu	ation Scen	narios	63
5.6	Summ	nary		84
CHAPTI	ER 6: S	ELECTIN	NG CONSTRUCTION METHOD ALTERNATIVE	85
6.1	Gener	al		85
6.2	Ranki	nking and Selection (R&S) for Evacuation Results		
6.3	Select	electing Best Alternative		
	6.3.1	Matrix o	f Potential Alternatives	89
	6.3.2	Weightin	g of Construction Methods Criteria.	89
	6.3.3	TOPSIS	Evaluation of Alternatives	90
		6.3.3.1	Data Normalization	90
		6.3.3.2	Accounting for Weights	91
		6.3.3.3	Determination of Ideal Values	91
		6.3.3.4	Distances to Ideal Values	92
		6.3.3.5	Calculation of Closeness Coefficient	93
6.4	Summ	nary		93
CHAPTI	E R 7: C	ONCLUS	SION AND FUTURE RESEARCH	94
7.1	Concl	lusions		94
7.2	Resea	rch Contri	butions	94
7.3	Limit	ations and	Future Directions.	95
LIST OF	REFE	RENCES		96
APPEND	DICES.	• • • • • • • • • • • • • • • • • • • •		106

LIST OF FIGURES

Figure 2.1:	Various Simulation Methods for Different Scales of Modelling	10
Figure 2.2:	Von Neumann Neighborhood, 4 Cells Surrounding Cell and Transition Matrix	13
Figure 2.3:	Moore Neighborhood, 8 Cells Surrounding Cell and Transition Matrix.	13
Figure 2.4:	General Elements of Agent Based Model	17
Figure 2.5:	Agent Based Modelling Software	18
Figure 2.6:	Structure of the AHP	25
Figure 3.1:	Representation of Fine Network Model.	30
Figure 3.2:	Representation of Coarse Network Model	31
Figure 3.3:	The Same Geometry Rendered in Continuous Model	31
Figure 4.1:	Components of Frameworks.	38
Figure 4.2:	Construction Planning Steps	39
Figure 4.3:	Layout of the Forms within the Revit Plug-in	41
Figure 4.4:	Additional Tool Buttons in Revit	42
Figure 4.5:	Time Points Selected for Each Construction Methods Scenario	46
Figure 5.1:	Case Study Project Floor Plan	48
Figure 5.2:	3-Dimension View of the Case Study	49
Figure 5.3:	Building Zones and Rooms	49
Figure 5.4:	Number of Labors for Scenario 1	53
Figure 5.5:	Sequence of Activities Scheduled Times for Scenario 1	53
Figure 5.6:	MS Project Schedule Times for Scenario 1	54
Figure 5.7:	Number of Labors for Scenario 2.	56
Figure 5.8:	Sequence of Activities Scheduled Times for Scenario 2	56
Figure 5.9:	Number of Labors for Scenario 3.	58
Figure 5.10:	Number of Labors for Scenario 4.	60
Figure 5.11:	Selected Points in Time For Evacuation During Project Execution	63
Figure 5.12:	Graphical Representation of Scenario 1 Evacuation	67
Figure 5.13:	Simulation Results of Scenario 1	82
Figure 5.14:	Simulation Results of Scenario 2	82
Figure 5.15:	Simulation Results of Scenario 3	83
Figure 5.16:	Simulation Results of Scenario 4	83
Figure 5.17:	Comparison of Simulation Results of Different Scenarios	84
Figure 6.1:	The Cases Selected for Scenario 1	86

Figure 6.2:	Number of Samples Needed vs. Sample Variance	86
Figure 6.3:	The Cases Selected for Different Scenarios 2, 3, and 4	87

LIST OF TABLES

Table 2.1:	Agent-based Modelling Applications	17
Table 2.2:	Comparisons of Different Modelling Approaches	19
Table 2.3:	The Saaty Rating Scale of AHP	26
Table 2.4:	Random Inconsistency Index (RI)	27
Table 4.1:	Walking Speeds on Stairs in MassMotion	45
Table 4.2:	Component Social Forces.	45
Table 5.1:	Construction Activities and Resources Demand.	50
Table 5.2:	Quantity Takeoff List for each Floor	50
Table 5.3:	Required Resource for Concrete Works Activities (Scenario 1)	51
Table 5.4:	Required Resource for Finishing Works Activities (Scenario1)	52
Table 5.5:	Construction Activities Duration for Scenario 1	52
Table 5.6:	Required Resource for Concrete Works Activities (Scenario 2)	54
Table 5.7:	Required Resource for Finishing Works Activities (Scenario 2)	55
Table 5.8:	Construction Activities Duration for Scenario 2.	55
Table 5.9:	Required Resource for Concrete Works Activities (Scenario 3)	57
Table 5.10:	Required Resource for Finishing Works Activities (Scenario 3)	57
Table 5.11:	Construction Activities Duration for Scenario 3	58
Table 5.12:	Required Resource for Concrete Works Activities (Scenario 4)	59
Table 5.13:	Required Resource for Finishing Works Activities (Scenario 4)	59
Table 5.14:	Construction Activities Duration for Scenario 4.	60
Table 5.15:	Estimated Direct Cost for Activities	61
Table 5.16:	Indirect Cost Components.	62
Table 5.17:	Total of Indirect Cost Components	62
Table 5.18:	Project Total Cost	63
Table 5.19:	Number of Labor and Location for Selected Time Points Scenario 1	64
Table 6.1:	Ranking & Selection Results for Scenario 1	86
Table 6.2:	Ranking and Selection Results for Scenarios 2, 3, and 4	88
Table 6.3:	Weight of Different Criteria.	89
Table 6.4:	Different Alternatives for Construction Method Scenarios	89
Table 6.5:	Square Root of Data Values	90
Table 6.6:	Distributive Normalization of Data Values	90
Table 6.7:	Weighted Normalized Decision Matrix	91
Table 6.8:	Determination of Ideal Values	01

Table 6.9:	Distance to Best Ideal Value.	92
Table 6.10:	Distance to Worst Ideal Value.	92
Table 6.11:	Closeness Coefficient Calculation	93

LIST OF ABBREVIATIONS

AEC Architecture, Engineering, and Construction industry

IFC Industry Foundation Classes

SD System Dynamic

ABM Agent Based Modeling

ABS Agent Based Simulation

DES Discrete-Event Simulation

BIM Building Information Modeling

VR Virtual Reality

DEVS Discrete Event systems Specification

ISEE Immersive Safety Engineering Environment

CA Cellular Automata

IAI International Alliance for interoperability

API Application Programming Interface

NIBS The National Institute of Building Sciences

GPSS General Purpose Simulation System

MCP Multiple Comparison Procedures

STEPS Simulations of Transient Evacuation and Pedestrian movements

MASCOT Multi Agent System for Construction Claims Negotiation

FDS Fire Dynamics Simulator

CFD Computational Fluid Dynamics

AHP Analytic Hierarchy Process

MCDM Multi Criteria Decision Making Process

TOPSIS Technique For Order Preference By Similarity to Ideal Solution

PIS Positive Ideal Solution

NIS Negative Ideal Solution

ABSTRACT

Evacuation of labors during emergency situations is a crucial aspect when considering construction project planning. To support emergency evacuation planning, it is critical to estimate labor evacuation times during project execution. This research presents a framework that aids in planning of construction labors emergency evacuation using building information models (BIM) and computer simulation. 4-Dimention models are created using BIM in order to generate construction project scheduling to visualize evacuation of labors in emergency situations at any time during project execution.

The construction total cost and project execution duration are estimated for each construction scenario based on the information in building information model (BIM). Computer simulation is adopted by applying agent-based simulation to model the behavior of labors in evacuation situations. MassMotion simulation platform is utilized to implement agent-based simulation and to imitate labors' behavior during emergency evacuation times under various conditions. Four alternatives that represent different scenarios are modeled in the proposed research. These scenarios take into consideration the sequence of activities, the number of labors for each activity, and duration of activities.

Ranking and Selection statistical procedures are used to determine the best simulated model configuration among the considered four alternatives. The Rinott's procedures are implemented to rank and select the evacuation time for these scenarios. Multi Criteria Decision Making (MCDM) is applied to help in selecting the suitable construction alternative. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used to identify the best construction method scenario taking into consideration three main criteria which are: construction total cost, execution time, and evacuation time of labors (safety considerations).

The proposed framework is examined within the context of a case study that considers evacuation of labors during the construction of building in Egyptian social housing national project. The proposed framework can be used as a decision support tool that aids contractor and safety managers to select the appropriate construction alternative(s) according their preference with respect construction total cost, execution time, and evacuation time of labors.