

ADAPTIVE NEAR-FIELD FOCUSING FOR WIRELESS POWER TRANSFER APPLICATIONS

By

Boules Atef Mouris Nessim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

ADAPTIVE NEAR-FIELD FOCUSING FOR WIRELESS POWER TRANSFER APPLICATIONS

By

Boules Atef Mouris Nessim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Assoc. Prof. Islam A. Eshrah Assoc. Prof. Ashraf Badawi

Associate Professor

Electronics and Communications

Engineering Department

Faculty of Engineering, Cairo University

Associate Professor

Center for Nanotechnology

Zewail City of Science and Technology

ADAPTIVE NEAR-FIELD FOCUSING FOR WIRELESS POWER TRANSFER APPLICATIONS

By

Boules Atef Mouris Nessim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the Examining Committee:
Assoc. Prof. Islam A. Eshrah, Thesis Main Advisor
Assoc. Prof. Ashraf Badawi, Thesis Advisor
Assoc. Prof. Tamer M. Abuelfadl, Internal Examiner
Prof. Ahmed M. Attiya, External Examiner (Electronics Research Institute)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Boules Atef Mouris Nessim

Date of Birth: 29/09/1990 **Nationality:** Egyptian

E-mail: boulesatef@hotmail.com

Phone: 01272559964

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 01/10/2013 **Awarding Date:** --/---/2016

Degree: Master of Science

Department: Electronics and Communications

Engineering

Supervisors:

Assoc. Prof. Islam A. Eshrah Assoc. Prof. Ashraf Badawi

Examiners:

Assoc. Prof. Islam A. Eshrah (Thesis main advisor)
Assoc. Prof. Ashraf Badawi (Thesis advisor)
Assoc. Prof. Tamer M. Abuelfadl (Internal examiner)
Prof. Ahmed M. Attiya (External examiner)

(Electronics Research Institute)

Title of Thesis:

ADAPTIVE NEAR-FIELD FOCUSING FOR WIRELESS POWER TRANSFER APPLICATIONS

Key Words:

Wireless Power Transmission, Adaptive Antenna, Near-Field Power Focusing, Source Localization, Beamforming

Summary:

A wireless power transfer system based on the concept of Near-Field Focusing is proposed in this thesis. The proposed system uses MUltiple SIgnal Classification algorithm for localizing the targets. A Minimum Mean Square Error beamforming technique is subsequently used in order to focus the RF power at the targets locations. Different parameters impacting the power transmission efficiency are studied. Results show a relatively high power density at the desired locations

Acknowledgments

First of all, I would like to thank God for the blessings, for each opportunity to learn and for putting me in a path that allowed me to meet people that have been kind to me and always pushing me forward towards success. I owe him every success that I could have done during my life.

This thesis would not have come to be without the support of many people. I would like to thank some of them here.

To begin with, I am deeply grateful to Dr. Islam Eshrah, Dr. Ashraf Badawi, and Dr. Tamer Ashour for their invaluable guidance, patience, continuous support, and for their effort to teach me. Thanks for them for believing in my potential, for keeping me motivated and for friendship.

I would like to thank Dr. Islam Eshrah who has been supervising me since my graduation project. I thank him for having taken me through every step of my graduate studies.

I would like to thank Dr. Ashraf Badawi for giving me the opportunity to work under his supervision in Zewail City of Science and Technology. I thank him for his openness, flexibility, friendly manner, and for supporting me during my hardest times.

I would like to thank Dr. Tamer Ashour for his sincere support, valuable comments, and for showing interest in my thesis topic eventhough it is not directly related to the fields he usually supervises.

I wish to express my deepest thankfulness and appreciation to examining committee members.

Many thanks to my friends for their support and help through the duration of this work. Last but not least, I am most grateful to my mother, my father and my family for their patience, love, biggest support and encouragement since my first steps in this world. Words are not enough to thank you.

Dedication

To my family and my friends

Table of Contents

A	cknow	ledgme	nts		i
De	edicat	ion			ii
Ta	ible of	f Conte	nts		iii
Li	st of 1	Figures			V
Li	st of S	Symbols	and Abb	reviations	vii
Li	st of 1	Publicat	tions		viii
Al	bstrac	t			ix
1	Intr	oductio	n		1
2	Lite	rature S	Survey		3
	2.2 2.3	2.1.1 2.1.2 2.1.3 2.1.4 Near-F	Inductive Magnetic Capacitiv Electrom Field Focus few on Dir Non-Sub 2.3.1.1 2.3.1.2	d State-of-the-art	3 4 5 5 6 7 7 8 8 8 8 8
3	Nea	r-Field	Focusing		11
	3.1		_	Field Focusing	11
	3.2	Simula		Its for Near-Field Focusing	
		3.2.1	MATLA	B results	12
		3.2.2	CST Res	ults	15

Re	eferen	ces	57
	7.1	Future work	56
7		clusions and Future Work	55
	6.8	Summary	54
	6.7	Time Sharing vs. Antenna Sharing	51
	6.6	The Effect of Obstacles	50
		ducting wall near targets	49
		6.5.2 Modification to the propagation model in the presence of a con-	
		6.5.1 Simulating the system without modification	47
	6.5	The Effect of the Background Environment	47
	6.4	Effect of the Finite Steps of Digital Phase-Shifters	45
		6.3.2 One target shifted from the z-axis at (0.25 m, 0.5 m, 1 m)	44
		6.3.1 One target on the z-axis at $(0,0,1m)$	41
		Array	41
	6.3	Comparison between Near-Field Focused Array and Far-Field Focused	
	6.2	Power Budget Study	41
-	6.1	The Effect of Increasing the Number of Targets	39
6	Asse	essment of The Proposed WPT System	39
	5.3	Summary	37
		5.2.2 CST Results	35
		5.2.1 MATLAB Results	32
	5.2	Results for Focusing Power using MMSE Beamforming	32
	5.1	MMSE Beamforming	31
5		ising Power at the Targets using MMSE Beamforming	31
	т.Ј	Guinniary	50
	4.4	Summary	30
	4.4	4.3.2 Results for Two-Dimensional MUSIC	28 30
		4.3.1 Two-Dimensional MUSIC Model	27 28
	4.3	Localization of Targets using Two-Dimensional MUSIC Algorithm	27
	4.2	4.2.3 Improved MUSIC algorithm for Coherent Signals	25
		4.2.2 Results for DOA using MUSIC	21
		4.2.1 Model	20
	4.2	MUSIC for DOA	20
	4.1	Introduction to MUSIC Algorithm	19
4		A and Localization of Targets using MUSIC Algorithm	19
	3.3	Limitations of Near-Field Focusing	17

List of Figures

1.1	The Proposed WPT System	1
2.1	Transmitter and receiver coils for an inductive coupling WPT. The red lines show the magnetic field. [8]	4
2.2	Magnetic Resonant Coupling System	4
2.3	Block diagram of WPT system based on EM radiation showing the basic elements of both the transmitter and harvester nodes	5
3.1	Linear Array Antenna Focused at (x_F, y_F, z_F)	12
3.2	3D view of focused planar square array	12
3.3	8×8 array of point sources focused at $(0,0,1 \text{ m}) \dots \dots \dots \dots$	13
3.4	8×8 array of point sources focused at (0.3 m,0.5 m,1 m)	14
3.5	Rectangular Microstrip Patch Antenna with Inset Feed working at 2.4 GHz	15
3.6	8×8 array of Rectangular Microstrip Patch Antennas focused at $(0,0,1 \text{ m})$	16
3.7	8×8 array of Rectangular Microstrip Patch Antennas focused at (0.3 m,0.5	
	m,1 m)	17
4.1	DOA estimation using a uniform linear array of N elements	21
4.2	$P_{MUSIC}(\theta)$ for $r = 2$, $\theta_i = -20$, 40	22
4.3	$P_{MUSIC}(\theta)$ for $N = 32$, $r = 3$, $\theta_i = -50$, 10, 40	23
4.4	$P_{MUSIC}(\theta)$ for $N = 8$, $r = 2$, $\theta_i = -20$, 40 for different no. of snapshots	24
4.5	$P_{MUSIC}(\theta)$ for $N = 8$, $r = 2$, $\theta_i = 10$, 40 for different SNR	24
4.6	$P_{MUSIC}(\theta)$ for close sources $N = 8$, $r = 2$, $\theta_i = 20, 23$	25
4.7	$P_{MUSIC}(\theta)$ for two coherent sources $N = 8$, $\theta_i = -20$, $40 \dots \dots \dots$	25
4.8	Conventional and Improved MUSIC algorithm $P_{MUSIC}(\theta)$ for two coher-	
	ent sources $N = 10$, $\theta_i = -20, 40$	26
4.9	Normalized 2D-MUSIC Spectrum for one source in the Near-Field of the	
	Array	28
4.10	Normalized 2D-MUSIC Spectrum for two sources in the Near-Field of	20
4 1 1	the Array	29
4.11	Normalized 2D-MUSIC Spectrum for three sources in the Near-Field of	20
4 12	the Array	29
4.12	Three-Dimensional Localization using MUSIC	30
5.1	8×8 array of point sources focused at (0.25 m,0.5 m,1 m) using MMSE	
	Beamforming	33
5.2	8×8 array of point sources focused at (-0.5 m,-0.25 m,1 m) and (0.25	
	m.0.5 m.1 m) using MMSE Beamforming	34

5.3	CST Model for 8×8 Array	35
5.4 5.5	CST Results for array focused at (0.25 m, 0.5 m, 1 m) using MMSE Dividing the array into two sub-arrays using MMSE beamforming to fo-	36
5.5	cus the power at two targets located at (-0.5 m, -0.25 m, 1 m) and (0.25	
	m,0.5 m, 1 m)	36
5.6	CST Results for array focused at (-0.5 m, -0.25 m, 1 m) and (0.25 m,0.5	50
5.0	m, 1 m) using MMSE Beamforming	37
	in, i in) using wiwish beautioriting	31
6.1	CST Results in the case of focusing at 3 targets	40
6.2	Study on the received power vs. radiated power	41
6.3	8×8 array focused in the far-field in the z-axis direction	42
6.4	8×8 array focused at the point $(0, 0, 1 \text{ m}) \dots \dots \dots \dots \dots$	43
6.5	8×8 array focused in the far-field and steered at the direction of (0.25 m,	
	0.5 m, 1 m)	44
6.6	Effect of the number of steps on the peak search in MUSIC when localiz-	
	ing a source at (0.25 m, 0.5 m, 1 m)	45
6.7	Approximating phase-shifts obtained from MMSE beamforming before	
	applying them to the array elements	46
6.8	Focused RF power density at (0.25 m, 0.5 m, 1 m) when the phase shifts	
	are approximated	46
6.9	Targets near PEC wall	47
6.10	Focused RF power density at the focal plane $(z = 0.7 m)$ in the presence of PEC at $z = 1 m$ in case of one target at $(-0.5 m, 0.25 m, 0.7 m)$ without	
	modification	48
6.11	Focused RF power at the focal plane $(z = 0.7m)$ in the presence of	
	PEC at $z = 1m$ in case of two targets at $(-0.5m, -0.25m, 0.7m)$ and	
	(0.25 m, 0.5 m, 0.7 m) without modification	48
6.12	Focused RF power density at the focal plane $(z = 0.7 m)$ in the presence	
	of PEC at $z = 1 m$ in case of one target at $(-0.5 m, 0.25 m, 0.7 m)$ using the	
	modified model	49
6.13	Focused RF power density at the focal plane $(z = 0.7 m)$ in the presence	
	of PEC at $z = 1m$ in case of two targets at $(-0.5m, -0.25m, 0.7m)$ and	
	(0.25 m, 0.5 m, 0.7 m) using the modified model	50
6.14	The presence of an obstacle between the target and the array	51
6.15	Time sharing	52
6.16	Magnitude of RF power density at the focal plane $(z = 0.7 m)$ when the	
	whole antenna is focused at $(-0.5 m, -0.4 m, 0.7 m)$	52
6.17	Magnitude of RF power density at the focal plane $(z = 0.7 m)$ when the	
	whole antenna is focused at $(0,0,0.7m)$	53
6.18	Magnitude of RF power density at the focal plane $(z = 0.7 m)$ when the	
	whole antenna is focused at $(0.35 m, 0.25 m, 0.7 m)$	53

List of Symbols and Abbreviations

Abbreviations Description

BTS Base Station.

DC Direct Current.

DOA Direction Of Arrival.

EIRP Effective Isotropic Radiated Power.

EM ElectroMagnetic.

ESPIRIT Estimation of Signal Parameters via Rotational Invariance Tech-

nique.

MMSE Minimum Mean Square Error.MUSIC MUltiple SIgnal Classification.

MVDR Minimum Variance Distortionless Response.

NFF Near-Field Focused.

PEC Perfect Electric Conductor.

Rectenna Rectifying-Antenna.
RF Radio Frequency.

RFID Radio Frequency IDentification.

ULA Uniform Linear Array.WPT Wireless power transfer.

Symbols Description

 λ Wavelength.