

PHYSICO-MECHANICAL PROPERTIES OF NBR/EPDM RUBBER BLEND LOADED WITH DIFFERENT TYPES OF COMPATIBILIZERS

By

Reem Mohamed Salah Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

PHYSICO-MECHANICAL PROPERTIES OF NBR/EPDM RUBBER BLEND LOADED WITH DIFFERENT TYPES OF COMPATIBILIZERS

By Reem Mohamed Salah Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Under the Supervision of

Prof. Dr.
Ehab Fouad Abadir
Professor of Chemical Engineering
Chemical Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr.
Sahar Mohamed El Marsafy
Professor of Chemical Engineering
Chemical Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr.
Mohamed Amin El-Shahir Sadek
Professor of Chemical Engineering
Chemical Engineering Department
Faculty of Engineering, British
University in Egypt (BUE)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PHYSICO-MECHANICAL PROPERTIES OF NBR/EPDM RUBBER BLEND LOADED WITH DIFFERENT TYPES OF COMPATIBILIZERS

By Reem Mohamed Salah Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Approved by the
Examining Committee

Prof. Dr. Ehab Fouad Abadir, Thesis Main Advisor
Faculty of Engineering, Cairo University

Prof. Dr. Sahar Mohamed El-Marsafy, Member
Faculty of Engineering, Cairo University

Prof. Dr. Samia Sobhy Mohamed, Internal Examiner
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Ismail Hussain, External Examiner
National Research Centre (NRC)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Reem Mohamed Salah Mahmoud.

Date of Birth: 14 /3 /1990. **Nationality:** Egyptian.

E-mail: Eng.reemsalah@yahoo.com

Phone: 010-630-939-35

Address: 16 zone 62,10th of Ramadan City.

Registration Date: 1/10/2012
Awarding Date:/2016
Degree: Master of Science.
Department: Chemical Engineering.

Supervisors:

Prof.Dr. Ehab Fouad Abadir.

Prof.Dr. Sahar Mohamed El-Marsafy. Prof.Dr.Mohamed Amin El-Shahir.

Examiners:

Prof.Dr.Ahmed Ismail Hussain (National Research Centre)

Prof.Dr.Samia Sobhy Mohamed. Prof.Dr.Ehab Fouad Abadir.

Prof.Dr.Sahar Mohamed El-Marsafy.

Title of Thesis:

Physico-Mechanical properties of NBR/EPDM rubber blend loaded with different types of compatibilizers.

Key Words:

NBR; EPDM; Rubber blends; Compatibilizers; NBR/EPDM characterization.

Summary:

The purpose of the present research is to compare between the effect of different types of compatibilizers (Maleic anhydride, epoxidized soybean oil and styrene butyl acrylate S-BA copolymer), which was added to overcome the incompatibility between NBR/EPDM blend, on the rheological, mechanical, physical and thermal properties of NBR/EPDM blends as well as to obtain the optimum amount of each type of them which will give such a superior properties. Blends of EPDM and NBR were prepared with different ratio (100/0, 75/25, 50/50, 25/75 and 0/100 EPDM/NBR) and the effect of the blend ratio on the mechanical, rheological and thermal properties have been investigated. Then compatibilization of 50/50 blend, which gives the superior mechanical properties, was made by using (MA) with ratios (0.5, 1, 1.5 and 2 phr); EO (2.5, 5, 7.5 and 10 phr) and S-BA (2.5, 5, 7.5 and 10 phr) were used, and a study of their effect on all the previous properties were made as well. It was found that, among different rubber blends, the (50/50) NBR/EPDM blend gives the highest rheological, mechanical and thermal characteristics. Using of MAH; EO or S-BA as compatibilizing agents increase the rheological, mechanical and swelling properties and at the same time don't affect the thermal stability of the NBR/EPDM rubber blends. Finally, it is recommended, for the compatibilization of NBR/EPDM, to use 1phr MAH; 5 Phr EO or 5 phr S-BA as these amounts give the optimum rheological, mechanical and swelling properties for the NBR/EPDM rubber blends.

Insert photo here

Acknowledgment

First of all, I thank God for giving me the strength to achieve this success.

I would like to thank my principle supervisors for their sincere help and unfailing support throughout the whole work, **Prof. Dr. Ehab Fouad Abadir**-Chemical Engineering Department-Faculty of Engineering-Cairo University, **Prof. Dr. Sahar Mohamed El-Marsafy**-Chemical Engineering Department-Faculty of Engineering-Cairo University and **Prof. Dr. Mohamed Amin El-Shahir**-Chemical Engineering Department-Faculty of Engineering-British University in Egypt (BUE).

Special thanks to **Prof. Dr. Ahmed Ismail Hussain** -Polymers and Pigments Department- National Research Centre (NRC), for helping me in accomplishing a part of my practical work.

I am also grateful for all the support I received from my academic family in the **Chemical Engineering Department** at the British University in Egypt (**BUE**), as well as the laboratories in the Chemical Engineering Department that assisted me during my work.

Also, I thank my great and beloved **husband Eng. Ahmad Talaat** for his encouragement and support all the time. Finally, this work would not have been completed without the spirit support of my **dear parents and sisters**; as usual they always push me to achieve further progress.

Table of Contents

ACKNOWLEDO	GMENT	I
TABLE OF CO	NTENTS	II
LIST OF TABLE	ES	V
LIST OF FIGUR	RES	VI
LIST OF SYMB	OLS AND ABBREVIATIONS	IX
	NTRODUCTION	
	ITERATURE REVIEW	
2.1.	POLYMERS	
2.1.1.	Classification of polymers according to the natural	
	origin	4
2.1.1.1.	Natural polymers	4
2.1.1.2.	Semi-synthetic polymers	4
2.1.1.3.	Synthetic polymers	4
2.1.2.	Classification of polymers according to physical pr	•
2.1.2.1.	Rubbers or Elastomers	5
2.1.2.1.	Plastics	
2.1.2.3.	Fibers	
2.1.2.4.	Resins	
2.2.	ELASTOMERS(RUBBERS)	
2.2.1.	Characteristic properties of rubbers	
2.2.2.	Classification of rubbers	
2.2.3.	Chemical structure of rubber	
2.3.	NITRILE RUBBERS (NBR/HNBR)	
2.4.	ETHYLENE-PROPYLENE RUBBER (EPM/EPDM)	
2.5.	RUBBER BLENDING	
2.5.1.	Preparation of rubber blends	
2.5.1.1. 2.5.1.2.	Latex Blending	
2.5.1.2.	Dry Blending	
2.5.2.	Rubber Vulcanization	
2.5.3.	Blending Ingredients	
2.5.3.1.	Fillers	
2.5.3.1.	Vulcanizing Agents	
2.5.3.3.	Accelerators	
2.5.3.4.	Activators	
2.5.3.5.	Processing aids	
2.5.4.	NBR/EPDM rubber blending	
2.5.5.	Rubber Miscibility	
2.5.5.1.	Miscible Rubber blends	
2552	Partially miscible rubber blends(Compatible)	

2.5.5.3.	Immiscible rubber blends(incompatible)	
2.5.5.4.	Factors in miscibility and immiscibility	
2.5.5.4.1.	Polarity	
2.5.5.4.2. 2.5.5.4.3.	Specific Group Attraction	
2.5.5.4.4.	Ratio	
2.5.5.4.5.	Crystallinity	
2.6.	COMPATIBILIZATION OF RUBBER BLENDS	
2.6.1.	Methods of Compatibilization	24
2.6.1.1.	Non-reactive compatibilization	
2.6.1.2.	Reactive compatibilization	25
2.6.2.	Compatibilizing agents	26
2.6.2.1.	How compatibilizers function	26
2.6.3.	Classification of compatibilizing agents	27
2.6.3.1.	Same structure	
2.6.3.2.	Miscible or Compatible Structure	
2.6.3.3.	Other Polymeric Compatibilizers	
2.6.4.	Compatibilization of NBR/EPDM	29
CHAPTER 3: ST	ATEMENT OF THE PROBLEM	32
CHAPTER 4 :EX	PERIMENTAL WORK	33
4.1.	Materials	33
4.1.1.	Rubbers	
4.1.1.	Acrylonitrile-butadiene rubber (NBR)	
4.1.1.2.	Ethylene propylene diene monomer (EPDM)	
4.1.2.	Fillers	
4.1.3.	Accelerators	
4.1.3.1.	N-cyclohexyl-2-benzothiazole sulphone amide (CBS)	
4.1.3.2.	Tetramethylthiuram disulfide (TMTD)	
4.1.4.	Antioxidants	
4.1.5.	Curing agents	34
4.1.6.	Activators	
4.1.6.1.	Zinc oxide	
4.1.6.2.	Stearic acid	34
4.1.7.	Compatibilizers	34
4.1.7.1.	Maleic anhydride	34
4.1.7.2.	Epoxidized soybean oil	
4.1.7.3.	Styrene butyl acrylate copolymer (S-BA)	
4.2.	Techniques	
4.2.1.	Mixing	35
4.2.2.	Vulcanization	35
4.3.	METHODS OF CHARACTERIZATION	37
4.3.1.	Rheometric characteristics	37
4.3.2.	Tensile Strength and percent elongation calculations	38
4.3.3.	Absorption properties	39
4.3.3.1.	Swelling	39
4.3.3.2.	Diffusion Coefficient (D)	
4.3.3.3.	Transport Mechanism	
4.3.4.	Thermal analysis	
4.3.4.1.	Thermal gravimetric analysis	
4.3.4.2. 4.3.4.2.1.	Kinetics of thermal degradation (Theoretical approach) Iso-conversional (model free) methods[57,59]	
1.5.7.4.1.	150 conversional (model free) memous[57,57]	73

CHAPTER 5:	RESULTS AND DISCUSSION	45
5.1.	RHEOMETRIC CHARACTERISTICS	45
5.2.	MECHANICAL CHARACTERISTICS	46
5.3.	ABSORPTION PROPERTIES	50
5.3.1.	Swelling	50
5.3.2.	Molar percentage of solvent uptake	
5.3.3.	Diffusion coefficient (D)	
5.3.4.	Transport mechanism	56
5.4.	THERMAL ANALYSIS	60
5.4.1.	Thermogravimetric analysis (TGA&DTG)	60
5.4.2.	Kinetics of thermal degradation	70
CHAPTER 6:	CONCLUSIONS AND RECOMMENDATIONS	73
REFERENCES	S	75
APPENDIX A: SCANNING ELECTRON MICROSCOPY (SEM)		

List of Tables

Table (2.1): Chemical structures of rubber classes
Table (2.2): Classification of organic vulcanization accelerators
Table (4.1): Formulation of blend compounds without addition of a
compatibilizer37
Table (4.2): Formulation of blend compounds with addition of different types of
compatibilizers with different ratios
Table (5.1): Rheometric properties of EPDM/NBR without compatibilizer at
150°C
compatibilizers of different doses46
Table (5.3): The diffusion coefficient (D) for different NBR/EPDM blends at
20°C55
Table (5.4): The diffusion coefficient (D) for (50/50) NBR/EPDM blend ratio at
20°C with different amounts of MAH compatibilizer56
Table (5.5): The diffusion coefficient (D) for (50/50) NBR/EPDM blend ratio at
20°C with different amounts of EO compatibilizer56
Table (5.7): The values of n and k for different blend ratios at 20°C57
Table (5.8): The values of n and k for (50/50) NBR/EPDM blend ratio with MAH
at 20°C58
Table (5.9): The values of n and k for (50/50) NBR/EPDM blend ratio with EO
compatibilizer at 20°C
Table (5.10): The values of n and k for (50/50) NBR/EPDM blend ratio with S-
BA copolymer compatibilizer at 20°C59
Table (5.11): Initial and peak temperatures for different rubber blends of DTG
curves at heating rate 5°C/min
Table (5.12): Initial and peak temperatures for different rubber blends of DTG
curves at heating rate 10°C/min66
Table (5.13): Initial and peak temperatures for different rubber blends of DTG
curves at heating rate 15°C/min (heating rate)66
Table (4.14): Initial and peak temperatures for different rubber blends of DTG
curves at 20°C/min (heating rate)66
Table (5.15): Activation energies of different rubber blends using the three iso-
conversional methods71
Table (5.16): Activation energies of (50/50) NBR/EPDM rubber blend without
and with compatibilizers using the three iso-conversional methods72

List of Figures

Figure (2.1): Nitrile Butadiene Rubber (NBR)	9
Figure (2.2): Areas of application of NBR	11
Figure (2.3): Ethylene Propylene Diene Monomer (EPDM)	11
Figure (2.4): Vulcanization process	15
Figure (2.5): Qualitative ranking of polymer polarities	21
Figure (4.1): NBR/EPDM rubber blending constituents.	
Figure (4.2): laboratory two-roll mill	36
Figure (4.3): Heated platinum press	36
Figure (4.4): Rubber sheet after vulcanization	36
Figure (4.5): Monsanto Oscillating disc Rheometer.	38
Figure (4.6): a Zwick-1425 tensile test machine.	38
Figure (4.7): dumbbell shape samples before tensile test.	39
Figure (4.8): sample during tensile test.	39
Figure (4.9): Weighing of the samples using laboratory electric balance	40
Figure (4.10): Immersing rubber samples in toluene solvent.	40
Figure (4.11): Drying of rubber samples by filter papers.	40
Figure (5.1): Tensile strength at break vs. different blend ratios without addition	n
of compatibilizers	47
Figure (5.2): % elongation at break vs. different blend ratios without addition o	\mathbf{f}
compatibilizers	
Figure (5.3): Relations between tensile strength at break and different doses of	
maleic anhydride as a compatibilizer.	48
Figure (5.4): Relations between %elongation at break and different doses of	
maleic anhydride as a compatibilizer.	49
Figure (5.5): Relations between tensile strength at break and different doses of	:
epoxidized oil and S-BA copolymer as compatibilizers	49
Figure (5.6): Relations between %elongation at break and different doses of	
epoxidized oil and S-BA copolymer as compatibilizers	50
Figure (5.7): %swelling vs. time of different blend ratios at 20°C	51
Figure (5.8):% swelling vs. time of (50/50) NBR/EPDM blend at 20°C with	
r	52
Figure (4.9):% swelling vs. time for (50/50) NBR/EPDM blend at 20°C with	
different amounts of EO compatibilizer	52
Figure (5.10): %swelling vs. time of (50/50) NBR/EPDM blend at 20°C with	
different amounts of S-BA compatibilizer.	53
Figure (5.11): Qt vs. (t) for different blend ratios at 20°C	53
Figure (5.12): Q_t vs.(t) $^{\frac{1}{2}}$ for (50/50) NBR/EPDM blend ratio at 20°C with	
different amounts of MAH compatibilizer	54
Figure (5.13): Qt vs. (t) ^{1/2} for (50/50) NBR/EPDM blend ratio at 20°C with	
different ratios of EO compatibilizer.	54
Figure (5.14): Qt vs. (t) $^{1/2}$ for (50/50) NBR/EPDM blend ratio at 20°C with	
different amounts of S-BA compatibilizer.	
Figure (5.15): Log (Q_t/Q_∞) vs. Log (t) for different blend ratios at 20°C	57
Figure (5.16): Log (Qt/Q ∞) vs. Log (t) for (50/50) blend ratio at 20°C with	
different ratios of MAH compatibilizer.	58

Figure (5.17): Log (Qt/Q ∞) vs. Log (t) for 50/50 blend ratio at 20°C with
different ratios of EO compatibilizer58
Figure (5.18):Log (Qt/Q ∞) vs. Log (t) for (50/50) blend ratio at 20°C with
different ratios of S-BA compatibilizer59
Figure (5.19): Thermogravimetric analysis (TGA) of pure EPDM sample at
different heating rate60
Figure (5.20): Thermogravimetric analysis (TGA) of pure NBR sample at
different heating rate61
Figure (5.21): Thermogravimetric analysis (TGA) of (25/75) EPDM/NBR sample
at different heating rates61
Figure (5.22): Thermogravimetric analysis (TGA) of (50/50) EPDM/NBR sample
at different heating rate
Figure (5.23): Thermogravimetric analysis (TGA) of (75/25) EPDM/NBR sample
at different heating rate
Figure (5.24): Derivative thermogravimetric analysis (DTG) of pure EPDM
sample at different heating rate63
Figure (5.25): Derivative thermogravimetric analysis (DTG) of pure NBR sample
at different heating rate63
Figure (5.26): Derivative thermogravimetric analysis (DTG) of (25/75)
EPDM/NBR sample at different heating rate
Figure (5.27): Derivative thermogravimetric analysis (DTG) of (50/50)
EPDM/NBR sample at different heating rate64
Figure (5.28): Derivative thermogravimetric analysis (DTG) of (75/25)
(EPDM/NBR) sample at different heating rate65
Figure (5.29): Thermogravimetric analysis (TGA) of (50/50) EPDM/NBR sample
with 1 phr MAH compatibilizer at different heating rates67
Figure (5.30): Thermogravimetric analysis (TGA) of (50/50) EPDM/NBR sample
with 5 phr EO compatibilizer at different heating rates
Figure (5.31): Thermogravimetric analysis (TGA) of (50/50) EPDM/NBR sample
with 5 phrS-BA compatibilizer at different heating rates
Figure (5.32): Derivative thermogravimetric analysis (DTG) of (50/50)
EPDM/NBR sample with 1 phr MAH compatibilizer at different heating rates68
Figure (5.33): Derivative thermogravimetric analysis (DTG) of (50/50)
EPDM/NBR sample with 5 phr EO compatibilizer at different heating rates69
Figure (5.34): Derivative thermogravimetric analysis (DTG) of (50/50)
EPDM/NBR sample with 5 phr S-BA compatibilizer at different heating rates69
Figure (5.35): Plot of $\ln(\beta/T^2)$ vs. 1/T (Kissinger method) for (50/50)
NBR/EPDM blend without compatibilizers at different conversion values70
Figure (5.36): Plot of ln(β) vs. 1/T (Ozawa method) for (50/50) NBR/EPDM
blend without compatibilizers at different conversion values
Figure (5.37): Plot of ln(βdq/dT) vs. 1/T (Friedman method) for (50/50)
NBR/EPDM blend without compatibilizers at different conversion values71
Figure (5.38): a comparison between the Activation energy of 50/50 blend ratio without and with compatibilizers
without and with compatibilizers
Fig.A.2: (50/50) NBR/EPDM blend with addition of 1phr MAH as a
compatibilizer
Fig.A.1: (50/50) NBR/EPDM blend without addition of any compatibilizer79

Fig.A.4: (50/50) NBR/EPDM blend with addition of 5 phr S-BA copolymer as	a
compatibilizer	.79
Fig.A.3: (50/50) NBR/EPDM blend with addition of 5 phr ESO as a	
compatibilizer	.79

List of Symbols and Abbreviations

AAGR: average annual growing rate

AAHR: aromatic hydrocarbon resins

ABS: acrylonitrile butadiene styrene

ACN: acrylonitrile

AMF: atomic force microscopy

ASTM: American society for testing and materials

AU: Polyester urethane

BCC: Business Communications Company

BR: butadiene rubber

BR: poly butadiene rubber

BR: Polybutadiene rubber

CBS: N-Cyclohexylbenzothiazole-2-sulfenamide

CMC: carboxy methyl cellulose

CR: Polychloroprene rubber

CSM: Chloro sulphonated polyethylene

CSM: Chlorosulphonated polyethylene

D: Diffusion Coefficient(Diffusivity)

DIPDIS: bis(diisopropyl)thiophosphoryl disulfide

DOTG: Di-o-tolylguanidine

DPG: Diphenylguanidine

DTG: derivative thermogravimetry

ECO: 65/35 Copolymers of epichlorohydrin and ethylene oxide

ENR: epoxidized natural rubber

EPDM: ethylene propylene diene monomer

EPR /**EPM**: ethylene propylene rubber

ESO: Epoxidized soybean oil

EVA/ EVM: ethylene vinyl acetate

EVASH: ethylene vinyl acetate copolymer functionalized with mercapto

HNBR: Hydrogenated Nitrile Butadiene Rubber (HNBR),

HSN: Highly Saturated Nitrile

IIR: butyl rubber

IIR: isobutylene-isoprene rubber

IR: isoprene rubber

M.p: melting point

MA /MAH: maleic anhydride

MA-g-systems: maleic anhydride grafted systems

MAH-g- EPDM: maleic anhydride grafted with ethylene propylene diene

monomer

MBS: 2-Morpholinothiobenzothiazol

MBT: 2-Mercaptobenzothiazole

MBTS: 2,2Dithiobisbenzothiazol

M_H: Maximum torque

M₁: Minimum torque

MQ: Methyl-Polysiloxane Silicon rubber

NBR: Nitrile Butadiene Rubber

N-DCBS: Dicyclohexylbenzothiazole-2-sulfenamide

NR: natural rubber

NRC: non-reactive compatibilization/compatibilizer

NR-g-MMA: natural rubber-grafted-methyl methacrylate

PA: polyamide-6

PBT: polybutylene terephthalate

PC: Polycarbonate

PCL: Poly(epsilon.-caprolactone)

PET: Polyethylene terephthalate

Phr: part per hundred parts by weight

PMMA: Polymethyl methacrylate

PPE: poly(2,6-dimethyl-1,4-phenylene ether)

PS-b-PMMA: Poly Styrene-block-methyl methacrylate

PVC: poly vinyl chloride

RC: reactive compatibilization

S: Sulphur

S-B block copolymer: styrene butadiene block copolymer

SBAH: polystyrene-hydrolyzed poly(*t*-butyl acrylate) di block copolymer

SBR: styrene-butadiene copolymer

SEBS: styrene ethylene butylene styrene copolymer

SEM: scanning electron microscopy

Sp.grv.: specific gravity

Sulphur MC: magnesium carbonate coated grade of sulphur

TBBS: N-t-butylobenzothiazole-2-sulfenamide

Tc90: curing time

T_g: glass transition temperature (Tg)

TG: thermogravimetric analysis

T_i: Onset temperature

TMTD: Tetra methyl thiuram disulfide

TMTM: Tetra methyl thiuram mono sulfide

TOR: trans-poly octylene rubber

T_p: peak temperature