The role of Magnesium Sulphate with corticosteriods for women at risk of preterm birth for neuroprotection of the newborn

Thesis

Submitted for Partial Fulfillment of Master Degree
In pediatric Medicine

Presented by

Shaimaa Nabil Hamza M.B.B.Ch., 2006

Supervised by

Prof. Dr. Hisham Abd El Samee Awad

Professor in Pediatric Medicine Ain Shams University

Prof. Dr. Ahmed Ramy Mohamed Ramy

Professor in obstetrics & Gynecology
Ain shams University

Prof. Dr. Safaa Shafik Imam

Professor in Pediatric Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2012

تأثير استخدام سلفات الماغنسيوم مع الكورتيزون للحوامل ذوات الخطورة العالية للولادة المبكرة في حماية الجهاز العصبي لحديثي الولادة

رسالة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيبة/ شيماء نبيل حمرة

تحت اشراف الأستاذ الدكتور / هشام عبد السميع عوض أستاذ طب الأطفال - كلية طب عين شمس

الأستاذ الدكتور /أحمد رامي محمد رامي أستاذ أمراض النساء و التوليد- كلية طب عين شمس

الأستاذة الدكتورة / صفاء شفيق إمام الأستاذة طب الأطفال- كلية طب عين شمس

كلية الطب جامعة عين شمس 2012

First, and foremost thanks are for Allah, to whom I relate any success in achieving any work in my life.

I would like to express my deeply felt gratitude to **Prof. Hisham Abd El Samee Awad**, Professor of Pediatrics, Ain Shams University for giving me the chance of working under his supervision. I appreciated his constant encouragement.

My profound gratitude is to **Prof. Ahmed Ramy Mohamed Ramy**, Professor of Obstetrics & Gynecology, Ain Shams University, who set up the proper environment for that work, and who supported me throughout this work.

I would like to express my sincere appreciation to **Prof. Safaa Shafik Imam**, Professor of Pediatrics, Ain Shams University, for her valuable instructions, inspiring guidance and great concern that really supported the work.

I would like to express my thanks and grateful appreciation to **Dr. Soha Khafagy**, Lecturer of Pediatrics, Faculty of Medicine, Ain shames University. Her limitless help, generous cooperation, valuable advice and kind encouragement are beyond acknowledgment.

Many Thanks for Neonatal intensive care unit'ultrasound team with special gratefulness and much regards to **Dr. Mohamed Gameel Elnazer**, Specialist of Pediatrics, Ain Shames University. For his helpful, enthusiastic sharing throughout the practical part of this work.

Finally, I would like to convey my gratitude to my patients and their families and to every person who helped me while performing this work.

Shaimaa Nabil

s Ja

Family for their warm affection, patience, encouragement, and for always being there when I needed them

S Ja

My husband **Hisham** who always support me, my daughter **Jana** and my son **Yassin** who fill my life with joy.

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	III
• List of Figures	IV
• Introduction	1
Aim of the Work	3
• Review of literature:	
- Chapter (1): Prematurity	4
- Chapter (2): Intracranial hemorrhage of p	remature
infants	28
- Chapter (3): Neonatal Transcranial ultrasound.	41
- Chapter (4): Antenatal Medications	69
Subjects and Methods	88
• Results	96
• Discussion	114
Summery & Conclusion	124
Recommendations	130
• References	131
Arabic Summary	

List of Abbreviations

AF : Anterior fontanel

BTM: Betamethasone

CBF: Cerebral blood flow

CNS : Central nervous system

Co₂ : Carbon dioxide

CP : Cerebral palsy

CPAP: Continuous positive air way pressure

CSF : Cerebro-spinal fluid

CT : Computerized tomography

CUS : Cranial ultrasonography

D : Diastole

DXM: Dexamethasone

ENaC: Epithelial sodium channel

EPO: Erythropoietin

ETT : Endotracheal tube

GA: Gestational age

GBS: Group B Streptococcus

GM : Germinal matrix

ICH : Intracranial hemorrhage

IMV : Intermittent mandatory ventilation

IPE: Intra-parenchymal echodensity

IV : Intravenous

IVH : Intraventricular hemorrhage

MF : Mastoid fontanel

MgSO4 : Magnesium sulfate

MRI : Magnetic resonant image

NEC: Necrotizing enterocolitis

NICU: Neonatal intensive care unit.

PCA: Post conceptional age

PDA : Patent ductus arteriosus

PF : Posterior fontanel

PPV : Positive pressure ventilation

PVH: Periventricular hemorrhage

PVL: Periventricular leucomalacia

RDS: Respiratory distress syndrome

RI : Resistive index

ROP : Retinopathy of prematurity

S : Systole

TCD: Triphasic colored Doppler

TW: Temporal window

U/S : Ultrasound

Vm : Mean velocity

WML: White matter lesion

List of tables

Table No.	Title	Page
Table (1)	Neonatal problems associated with	9
	premature infants.	
Table (2)	Quantitative descriptive data of the study	97
	and the control groups.	
Table (3)	Qualitative descriptive data of the study	99
	and the control groups.	
Table (4)	Difference between Both Groups	101
	regarding Need for Active Resuscitation,	
	Need for Assisted Ventilation, Need for	
	Postnatal Steroids and Development of	
	Chronic Lung Disease.	
Table (5)	Difference between Both Groups	104
	regarding Intracranial Hemorrhage	
Table (6)	Difference between Both Groups	106
	regarding Postnatal RI of Middle Cerebral	
	Artery measured by Transcranial Doppler	
	Ultrasound	
Table (7)	Comparison between Both Groups	108
	regarding Hypotonia and Convulsions	
Table (8)	Comparison between Both Groups	110
	regarding Fate of Intracranial	
	Hemorrhage.	
Table (9)	Comparison between Both Groups	112
	regarding Neonatal Mortality.	

List of figures

Fig. No.	Title	Page
Fig. (1)	Respiratory distress syndrome (grade 1-	13
	4) of the premature newborn.	
Fig. (2)	Cranial ultrasound procedure performed	44
	in a premature infant in its incubator.	
Fig. (3)	Well-fitting ultrasound probe, positioned	45
	onto the anterior fontanel. Arrow	
	indicates the marker on the probe.	
Fig. (4)	The acoustic windows. AF anterior	46
	fontanel, PF posterior fontanel, MF	
	mastoid (or postero-lateral) fontanel,	
	TW temporal window.	
Fig. (5)	a- Coronal plane.	47
a, b	b- Standard six coronal planes.	
Fig. (6)	Probe positioning for obtaining coronal	48
	planes (arrow indicates marker).	
Fig. (7)	Normal brain, anterior fontanelle	48
	approach. Coronal image through the	
	frontal horns of the lateral ventricles	
	(solid arrow), sonographic drop out from	
	the floor of the frontal vault (dashed	
	arrow), and superior sagittal sinus	
	(dotted arrow).	
Fig. (8)	a- Sagittal section.	49
a, b	b- Standard five sagittal planes.	

Fig. No.	Title	Page
Fig. (9)	Probe positioning to obtain sagittal	50
	planes (arrow indicates marker).	
Fig. (10)	Right parasagittal view. The entire lateral ventricle (straight arrows) is imaged. The head of the caudate lobe (Ca) is seen anterior and somewhat superior to the right thalamus (T). Echogenic choroid plexus (c) is seen within the body of the lateral ventricle, particularly in the area of the atrium. Exaggerated echoes (curved arrows) are seen in the periatrial white matter, created by an anisotropic effect on white matter fibers, probably at 90° to the	50
T' (11)	ultrasound beam.	50
Fig. (11)	Posterior fontanel. Probe positioning for coronal scan using the posterior fontanel as an acoustic window (arrow indicates marker).	52
Fig. (12)	Ultrasound scan of the coronal view, using the posterior fontanel as an acoustic window (GA 26 weeks, 5 days, PCA 30 weeks, 2 days). Scan shows wide occipital horns, often seen and a normal finding at this age. Note that the cerebellar vermis is more echogenic than the cerebellar hemispheres.	53

Fig. No.	Title	Page
Fig. (13)	Probe positioning to obtain a coronal	56
	view, using the left mastoid fontanel as	
	an acoustic window (arrow indicates	
	marker).	
Fig. (14)	Ultrasound scan of coronal view through	57
	the cerebellum, using the left mastoid	
	fontanel as an acoustic window. Note	
	that the cerebellar hemisphere further.	
Fig. (15)	Probe positioning to obtain a transverse	58
	view, using the left temporal window	
	(arrow indicates marker).	
Fig. (16)	Ultrasound scan of the transverse view	59
	through the upper cerebellum and	
	mesencephalon using the temporal	
	window (PCA 29 weeks, 3 days). Arrow	
	indicates mesencephalic aqueduct (18).	
Fig. (17)	A. Coronal view through the third	61
	ventricle (dashed arrow) using anterior	
	fontanelle approach. Subependymal	
	hemorrhage is seen in the wall of the	
	right lateral ventricle. B. Right	
	parasagittal view of the same patient	
	showing subependymal hemorrhage	
	with central cystic area in the	
	caudothalamic notch, caudate head (Ca),	
	and thalamus (T). Diagnosis: grade I	
	IVH, subacute.	

Fig. No.	Title	Page
Fig. (18)	Grade II IVH a Coronal ultrasound scan	62
	in a preterm baby (GA 26 weeks,	
	scanned at post-conceptional age 29	
	weeks), level of the bodies of the lateral	
	ventricles, showing bilateral IVH	
	(arrows).	
Fig. (19)	Coronal (A) and right parasagittal (B)	62
	views using the anterior fontanelle	
	approach. There is blood clot in the	
	dilated left lateral ventricle (solid arrow)	
	and clot within the right lateral ventricle	
	with a central cystic area, suggesting a	
	subacute phase (dotted arrow).	
	Diagnosis: subacute grade III IVH.	
Fig. (20)	Grade 4 germinal matrix hemorrhage-	63
	subependymal bleed with	
	intraventricular hemorrhage (IVH) and	
	intraparenchymal extension. There is	
	also a small subependymal cyst.	
Fig. (21)	Comparison between the study and	100
	control groups regarding 5-min Apgar	
	Score (P Value=0.168 no statistical	
	significant).	
Fig. (22)	Comparison between both study and	102
	control groups regarding Need for	
	Active Resuscitation.	

Fig. No.	Title	Page
Fig. (23)	Comparison between both study and	102
	control groups regarding Need for	
	Assisted Ventilation.	
Fig. (24)	Comparison between both groups	105
	regarding Sonographically-Detected	
	ICH.	
Fig. (25)	Showing Difference between Both	107
	Groups regarding Postnatal RI of	
	Middle Cerebral Artery measured by	
	Transcranial Doppler Ultrasound.	
Fig. (26)	Comparison between Study and control	109
	groups regarding Convulsions and	
	hypotonia.	
Fig. (27)	Showing Difference between Both	113
	Groups regarding Neonatal Mortality.	

Introduction

Most pregnancies last around 40 weeks. Babies born between 37 and 42 completed weeks of pregnancy are called full term. Babies born before 37 completed weeks of pregnancy are called premature (*Martin et al.*, 2008).

Premature birth, commonly used as a synonym for preterm birth, refers to the birth of a baby before its organs mature enough to allow normal postnatal survival, and growth and development as a child. Premature infants are at greater risk for short and long term complications (*Goldenberg et al.*, 2008).

Premature babies also face an increased risk of lasting disabilities, such as mental retardation, learning and behavioral problems, cerebral palsy, lung problems, vision and hearing loss (*Limperopoulos et al.*, 2008).

Significant progress has been made in the care of premature infants, but not in reducing the prevalence of preterm birth (*Goldenberg et al.*, 2008).

Severely premature infants may have underdeveloped lungs, because they are not yet producing their own surfactant. This can lead directly to respiratory distress syndrome, also called hyaline membrane disease, in the neonate. To try to reduce the risk of this outcome, pregnant mothers with threatened premature delivery prior to 34 weeks are often administered at least one course of glucocorticoids, a steroid

that crosses the placental barrier and stimulates the production of surfactant in the lungs of the fetus (*Roberts and Dalziel*, 2006).

Antenatal magnesium sulfate therapy given to women at risk of preterm birth is neuroprotective against motor disorders in childhood for the preterm fetus (*Doyle et al.*, 2009.b).

Intraventricular hemorrhage (IVH) is a known risk factor for the later development of cerebral palsy (*Kuban*, 1994) with the risk of IVH and periventricular leucomalacia increasing, the earlier the gestational age at birth (*Vermeulen et al.*, 2001).

In women who are at risk of preterm birth, the available evidence shows that giving antenatal magnesium sulphate therapy substantially improves their unborn baby's chance of survival, free of cerebral palsy (*Crowther et al.*, 2003).

Prevention of perinatal white matter injury with or without severe intraventricular hemorrhage (IVH) is critical to reduce cerebral palsy (CP) in premature infants. Antenatal therapies that may afford neuroprotection include glucocorticolds, which are associated with a significant reduction in severe IVH, and magnesium, which is associated with reduced CP (*Jeffrey*, 1998).

Few studies have investigated the antenatal consumption of a combination of corticosteroids and magnesium sulfate together and the neonatal outcome.