Assessment of Apparent Diffusion Coefficient Values as non invasive biomarker for Aggressiveness of Prostate Cancer: Comparison with Gleason Score.

Thesis

Submitted for partial fulfillment of M.Sc. Degree in diagnostic radiology

Presented by

Youstina El Amir Wadie

(M.B.B.Ch. Cairo University)

Supervised by

Prof. Ikram Hamed Mahmoud

Professor of Radiodiagnosis, National Cancer Institute, Cairo University

Prof. Manal Halim Wahba

Professor of Radiodiagnosis, Faculty of Medicine, Cairo University

Prof. Iman Gouda Farahat

Professor of surgical pathology, National Cancer Institute,
Cairo University

Cairo University

2016

Acknowledgment

First and foremost, I thank **ALLAH**who gave me the strength to accomplish this work.

My deep appreciation to **Prof. Dr. Ikram Hamed Mahmoud**,

Professor of Radiodiagnosis, National cancer institute— Cairo University,
for giving me the honour to work under his supervision.

My deep appreciation to **Prof Dr. Manal Halim Wahba** Professor of Radiodiagnosis, Faculty of medicine – Cairo University, for her great effort during this study.

Special thanks to **Prof Dr. Iman Gouda Farahat**, professor of surgical pathology, National cancer institute – Cairo University, for her great effort during this study

Special thanks to assistant Prof Dr. Sally Emad El Din, assistant professor of Radiodiagnosis, Faculty of medicine – Cairo University for her great effort during this study

I am also deeply grateful to my friends and colleagues **Kholoud**Morad and Basma abd El sabour for their great effort and support in this study.

Special thanks to my Family for their spiritual support

ABSTRACT

Prostate carcinoma is the second most frequent cause of cancerrelated death in men. DWI is one of the evolving functional MR imaging that assess tissue cellularity. The ADC maps can provide quantitative measurements of tissue water diffusivity through ADC values.

The Gleason scoring system has been accepted internationally as a reference grading system for prostate cancer with respect to tumor aggressiveness.

Using the ADC values as a biomarker for assessment of prostate cancer aggressiveness may help appropriate management of this disease.

Keywords:

Prostate cancer, apparent diffusion coefficient, Gleason score.

LIST OF CONTENTS

>	LIST OF FIGURES III
>	LIST OF TABLESVII
>	LIST OF ABBREVIATIONS
>	INTRODUCTION1
>	AIM OF WORK3
>	ANATOMY OF THE PROSTATE4
>	PATHOLOGY OF PROSTATE CANCER19
	MR IMAGING APPEARANCE OF PROSTATE CANCER
>	DIFFUSION MRI PRINCIPLES 47
>	APPLICATIONS OF MRI DIFFUSION IN PROSTATE CANCER
>	PATIENTS AND METHODS65
>	RESULTS 68
>	ILLUSTRATED CASES

	DISCUSSION	86
>	SUMMARY AND CONCLUSION	94
>	REFERENCES	95

LIST OF FIGURES

		Page
Figure 1	Diagrammatic representation of the pelvic Anatomy	4
Figure 2	Diagrammatic representation of the lobar and zonal	5
	anatomy of the prostate	
Figure 3	Coronal and sagittal plane of the prostate	9
Figure 4	Zonal anatomy of the prostate	11
Figure 5	The European Consensus Guidelines division of the prostate gland into the minimal 16 - and optimal 27 -	13
	regions of interest.	
Figure6	Arterial Supply of the Prostate	14
Figure 7	Venous Drainage of the Prostate	15
Figure 8	Distribution of nerve branches to the prostate	16
Figure 9	Normal prostate zonal anatomy in T2-weighted axial MR images obtained at the level of the seminal vesicles	18

Figure10	Gleason patterns	24
Figure11	Recent Gleason pattern 4	28
Figure12	TNM staging of prostatic carcinoma	37
Figure13	T2 WI image of four different prostate cancer cases with extra-capsular extension of the tumor	41
Figure14	Biopsy-proved adenocarcinoma in a 61-year-old man	42
Figure15	PI-RADS classification of prostate cancer	45
Figure16	Diffusion of water molecules	48
Figure17	Diagram representation of measuring water diffusion	50
Figure18	T2 shine- throw effect effect with DWI	51
Figure19	Benign prostatic hyperplasia	57
Figure20	Prostate carcinoma DWI & ADC map	58
Figure21	Stage T3b prostate cancer	59
Figure22	Right peripheral zone cancer of mid gland	60
Figure23	Left peripheral zone cancer	61

Figure24	MR imaging-guided prostate biopsy	62
Figure25	Magnetic resonance imaging (MRI) after radical retropubic prostatectomy.	63
Figure26	Therapeutic response in prostate cancer before and after radiation therapy.	64
Figure27	Chart demonstrating the site of the prostate cancer.	68
Figure28	Pie chart demonstrating percentage of positive T2 in localization of prostate cancer	69
Figure 29	Pie chart demonstrating percentage of positive DWI in localization of prostate cancer	70
Figure 30	Chart demonstrating the difference between T2, DWI and ADC map images in localization of the lesions.	70
Figure31	chart demonstrating Gleason score representation among patients.	71
Figure 32	Demonstrating the relationship between the mean ADC value and the Gleason score.	72
Figure 33	Demonstrating the relationship between the mean ADC Value and the grade of the tumor.	73

Figure 34 Chart demonstrating the relation chip between the mean	74
ADC value and Gleason scores 3+4 and 4+3.	
Figure 35 case I illustration	76
Figure 36 case II illustration	77
Figure 37 case III illustration	78
Figure 36 case IV illustration	79
Figure 37 case V illustration	80
Figure 38 case VI illustration	81
Figure 39 case VII illustration	82
Figure 40 case VIII illustration	83
Figure 41 case IX illustration	84
Figure 42 case X illustration	85

List of tables

Table (1)	The new contemporary prostate cancer grading system.	29
	PI-RADS score: Definition of total score and assignment aggregate scores according to individual modalities used	46
Table (3)	Demonstrating the PSA and age of the patients.	68
Table (4)	Demonstrating the mean ADC value and the Standard deviation of each Gleason score.	71
Table(5)	Demonstrating the mean ADC value and the standard deviation of different grades of the tumor.	72
Table (6)	Demonstrating the difference between the mean ADC Value and the standard deviation of Gleason score 3+4 and Gleason score 4+3.	73
Table (7) 1	Demonstrating the results of the ROC for Gleason score >7	74
Table (8) l	Demonstrating the results of the ROC for Gleason score <7	75
Table (9) l	Published data on Gleason Score (GS) and ADC Values	88

LIST OF ABBREVIATIONS

AAH: Atypical Adenomatous Hyperplasia

ADC: Apparent diffusion coefficient

AJCC: American joint committee on cancer

AUC: Area under the curve

BPH: Benign prostatic hyperplasia

CRPC: castration resident prostate cancer.

CT: Computed tomography

CZ: Central zone

DRE: Digital rectal examination

DWI: Diffusion-weighted imaging

EBRT: External beam radiotherapy

ECE: Extra Capsular Extension

EPI: Echo-planar imaging

ERC: Endo-rectal coil

FOV: Field of view

GS: Gleason score

HIFU: High intensity focused ultrasound

HT: Hormonal treatment

IGRT:Image-guided radiotherapy

IMRT: Intensity-modulated radiotherapy

IORT: Intraoperative radiotherapy

LN: Lymph node

MRI: Magnetic resonance imaging

MRS: Magnetic resonance spectroscopy

NSA: Number of signal averages

PACS: Picture archiving and communication system

PCa: prostate cancer

PCAP: predisposing for cancer of the prostate gene

PIN: Prostatic intraepithelial neoplasia

PSA: Prostatic specific antigen

PSAD: PSA density

PSAV: PSA velocity

PZ: Peripheral zone

RF: Radiofrequency pulse

ROC: Receiver operating characteristic

ROI: Regions of interest

RP: Radical prostatectomy

RT: Radiotherapy

SD: Standard deviation

SE: Spin echo

SI: Signal intensity

SNR: Signal-to-noise ratio

SOR: Standard of reference

SVI: seminal vesicle invasion.

TRUS: Transrectal ultrasound

TSE: Turbo spin-echo

TURP: Trans-urethral resection of the prostate

TZ: Transitional zone

US: Ultrasonography

WI: Weighted image

INTRODUCTION

Prostate cancer is the most frequently diagnosed solid malignant tumor among men. The morbidity and mortality directly attributable to this common malignancy are considerable. However, in a non negligible proportion of patients, the disease may be considered relatively indolent (**De Cobelli et al.,2015**).

The diagnosis of prostate cancer is based on a digital rectal examination (DRE) and assessment of serum prostate specific antigen (PSA) followed by transrectal ultrasound (TRUS)-guided biopsy (Anwar et al.,2014).

T2-weighted MRI has been commonly used to detect prostate cancer. Recently, diffusion-weighted MRI (DW-MRI) has been widely introduced in the clinical setting. It is advantageous as it offers increased diagnostic accuracy due to the clear delineation between normal and prostate cancer, namely the high signal of cancerous lesions and the restricted signal of normal tissue DW-MRI is a non-invasive imaging technique that quantifies the diffusion of water molecules in tissues without any contrast agents, tracers, or exposure to radiation .DW-MRI may also provide qualitative information regarding the pathophysiological character of prostate cancer (Bae et al.,2014).

The assessment of local aggressiveness of prostate cancer (PCa) is of key importance for appropriate management of this disease. The increase in life expectancy of the general population combined with efficient screening methods will lead to an increase in the number of new PCa cases. These cases will tend to be more localized and at an earlier stage (Lebovici et al., 2014).

The Gleason scoring (GS) system has been accepted internationally as a reference grading system for prostate cancer With respect to tumor aggressiveness, tumors are classified as low risk (Gleason score, \leq 6), intermediate risk(Gleason score, 7) or high risk (Gleason score, \geq 8) (**Doo etal., 2012**).

To establish the ADC as a robust biomarker for predicting prostate cancer Gleason scores, standardization of quantitative ADC metrics is of crucial importance (**Donati et al., 2014**).