Tanta University
Faculty of Agriculture
Department of Agronomy

BREEDING STUDIES ON MAIZE CROP (Zea mays, L.)

BY

Rafiq Halim Abd El-999 Aziz Alsebaey

B. Sc. Agric. (2003) Kafr Elsheikh faculty, Tanta Univ.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Master

IN Tural S

Agricultural Science (Agronomy)

Supervision Committee

Prof. Dr.
Ramadan A. El-Refaey

Prof. of Agronomy Fac. of Agric., Tanta University *Prof. Dr.*El-Sayed H. El-Seidy

Prof. and Head of Dept. of Agronomy, Fac. of Agric., Tanta University

Dr.

Afify A. Barakat

First researcher in Maize Res. Sec., Field Crop Res. Institute, A. R. C.

2008

BREEDING STUDIES ON MAIZE CROP (Zea mays, L.)

BY

Rafiq Halim Abd El-Aziz Alsebaey

B.Sc. Agric. (2003) Kafr Elsheikh faculty, Tanta Univ.

Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of Master
In
Agriculture Science
(Agronomy)

Under The Supervision of:

Field Crop Res. Institute, A. R. C.

Prof. Dr. Ramadan A. El-Refaey	
Prof. of Agronomy Fac. of Agric., Tanta University	
Prof. Dr. El-Sayed H. El-Seidy	
Prof. and Head of Dept. of Agronomy, Fac. of Agric., Tanta University	
Dr. Afify A. Barakat	
First researcher in Maize Res. Sec.,	

Tanta University
Faculty of Agriculture
Department of Agronomy

APPROVAL SHEET

BREEDING STUDIES ON MAIZE CROP

(Zea mays, L.)

BY

Rafiq Halim Abd El-999Aziz Alsebaey

B.Sc. Agric. (2003) Kafr Elsheikh faculty, Tanta Univ.

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of M. Sc. degree IN Agricultural Science

(Agronomy) Approved by :

Prof. Dr. Ramadan Ali El-Refaey Prof. of agronomy Fac. of Agric., Tanta University	
Prof. Dr. El-Sayed Hamid El-Seidy Prof. and Head of Dept. of Agronomy, Fac. of Agric., Tanta University	
Prof. Dr. Abdelrehim Ahmed Ali Prof. of Agronomy, Fac. of Agric., Suez canal University	
Prof. Dr. Hamdy El-Mrzoky Gado Chief researcher, Maize Res. Sec., and Vicar of Agriculture Ministry in Menufiya	

Date of approval: 26 / 8 / 2008

جامعة طنطا كلية الزراعة قسم المحاصيل

دراسات على تربية محصول الذرة الشامية

رسالة مقدمة من رفيق حليم عبد العزيز السباعي

> بكالوريوس علوم زراعية ٢٠٠٣م كلية الزراعه بكفر الشيخ جامعة طنطا

كأحد المتطلبات للحصول على درجة الماجستير فى العلوم الزراعية (محاصيل)

قد تمت مناقشة الرسالة و الموافقة عليها من قبل لجنة المناقشه والحكم وهم: أد/ رمضان على الرفاعي أستاذ المحاصيل كلية الزراعه جامعة طنطا أد/ السيد حامد الصعيدي أستاذ ورئيس قسم المحاصيل كلية الزراعة جامعة طنطا أد/ عبد الرحيم احمد على أستاذ المحاصيل كلية الزراعة جامعة قناة السويس أد/ حمدى المرزوقي جادو رئيس بحوث (قسم بحوث الذره الشاميه)

ووكيل وزأرة الزراعه بالمنوفيه

تاريخ الموافقة: ٢٦ / ٨ / ٢٠٠٨

جامعة طنطا كلية الزراعة قسم المحاصيل

دراسات على تربية محصول الذرة الشاميه

رسالة مقدمة من رفيق حليم عبد العزيز السباعى بكالوريوس علوم زراعية (٢٠٠٣م) كلية الزراعه بكفر الشيخ جامعة طنطا

كأحد المتطلبات للحصول على درجة الماجستير في العلوم الزراعية (محاصيل)

لجنة الإشراف

أ.د/ السيد حامد الصعيدى أستاذ ورئيس قسم المحاصيل كلية الزراعة جامعة طنطا أ.د/ رمضان على الرفاعى أستاذ المحاصيل كلية الزراعة جامعة طنطا

د/ عفيفى عبد المعبود بركات باحث أول بقسم بحوث الذره الشاميه معهد بحوث المحاصيل الحقايه مركز البحوث الزراعيه

Y . . A

جامعة طنطا

دراسات على تربية محصول الذرة الشاميه

رسالة مقدمة من رفيق حليم عبد العزيز السباعى بكالوريوس علوم زراعية (٢٠٠٣م) كلية الزراعه بكفر الشيخ جامعة طنطا

كأحد المتطلبات للحصول على درجة الماجستير في العلوم الزراعية (محاصيل)

لجنة الإشراف:
 أ.د/ رمضان على الرفاعي
أستاذ المحاصيل
كلية الزراعة جامعة طنطا
 أد/ السيد حامد الصعيدي
أستاذ ورئيس قسم المحاصيل كلية الزراعة
جامعة طنطا
 د/ عفيفي عبد المعبود بركات
باحث أول بقسم بحوث الذره الشاميه
معهد بحوث المحاصيل الحقليه
مركز البحوث الزراعيه

ABSTRACT

Through this work, an improvement cycle by S₁ progeny selection for the yield of Gemmeiza yellow maize population was conducted as follows; in the first year of the cycle (2004), S₁ progenies grains were formed, then 144 S₁ progenies were evaluated in the second year at Gemmeiza and Sakha Agricultural Research Stations. Each of variance components, heritability and expected genetic advance were estimated for S₁ progenies studied traits, and the highest-yielding among the 144 S₁ progenies were selected with selection intensities (10%) & (20%). In the third year (last year of the cycle), grains of the two new populations (C10 & C20) were formed by bulked-pollen mating among the selected S₁ progenies for both selection intensities, then were sown in the forth year with the original population and the check (Sakha 21) at Gemmeiza Agricultural Research Station to evaluate selection action on grain yield and another traits. Despite of high significant variations among S₁ progenies yield, the two means for the yield of selected S_1 progenies were not much higher than the mean for all S₁ progenies yield. Heritability estimates were either high or quite high at both locations with lower values in the combined data for most of the studied traits. Flowering date of the selected S₁ progenies should be taken in consideration to insure that each S₁ progeny will be represented during mating. Gemmeiza yellow maize populations exhibited superiority in the yield over the check. There was a discrepancy between expected gain and actual change for yield trait. At the end of this improvement cycle, we got a new improved population with an increase (8%) than the original population yield. This increase in the yield due to the increase in number of rows per ear.

CONTENTS	Page
I- INTRODUCTION	1
II- REVIEW OF LITURATURE	
II- 1- Genetic variance in open-pollinated maize populations	3
II- 2- Populations improvement by using \mathbf{S}_1 families selection method, selection intensity, heritability and selection gain	10
III- MATERIALS AND METHODS	24
IV- RESULTS AND DISCUSSION	
IV- 1- Mean squares for S ₁ lines	34
IV- 2- Mean, environmental variance and coefficient of variation	36
IV- 3- Variance components and heritability	40
IV- 4- Phenotypic and genotypic coefficients of variability	43
IV- 5- Expected and actual gain from selection	45
V- SUMMARY	49
VI- REFERENCES	53

ARABIC SUMMARY & ARABIC ABSTRACT

LIST OF TABLES

Table No.	Title	Page
110.	Materials and methods tables	
1	Analysis of variance for S ₁ lines at a single location	28
2	Combined analysis of variance for S ₁ lines over two locations	29
3	Source of variations and degrees of freedom of Analysis of variance for	
	evaluation trial for a single location.	33
	Results and discussion tables	
4	Mean squares for ten characters as estimated from two location and	
	combined data over the two locations for G.Y.P. S_1 lines (2005).	35
5	Mean (\overline{X}) , environmental error (δ^2_E) and coefficient of variation (C.V.)	
	values for the different characters at Gemmeiza, Sakha and for	
	combined analysis for G.Y.P. S ₁ progenies (2005).	39
6	Phenotypic (δ^2_{Ph}), genotypic (δ^2_{G}), genotypic with locations interaction	
	(δ^2_{GL}) variances and heritability for various traits	
	for G.Y.P. S ₁ progenies (2005).	42
7	Phenotypic (Ph. C. V.%) and genotypic (G.C.V.%) coefficients of	
	variability for various traits at two locations and for combined analysis for	
	G.Y.P. S ₁ families (2005).	44
8	Means, C.V. and L.S.D. for G.Y.P. and the check studied traits, and	
	expected and actual gains for the two selection intensities at	
	Gemmeiza location.	48

I- INTRODUCTION

Maize (Zea mays, L.) is one of the most important strategic cereal crops in Egypt. It is ranked the first in terms of area and total production. It is widely used in bread making in rural areas in the country. Recently, maize flour is melded with wheat flour by 20% in bread making in order to reduce the amount of wheat imports. Also, it is used as a feed for livestock and poultry, either as green fodder and silage or as a main component (grain) of dry feed. In addition, it is used for several industries such as starch, fructose and corn oil.

The grown area of maize in Egypt is about 1.6 million faddan (one faddan = 4200 m^2) which produced 5.452 million ton of grain with an average 24.3 ardabs per faddan (one ardab = 140 kg.) in 2007 season.

S₁ families recurrent selection is widely used as an easy and simple procedure for intra-population improvement in maize. Estimation of genetic variance and its components are of great important for improvement in maize by any program. If the estimates of genetic variance indicate that, the additive genetic variance is of major importance, in this case, selection on the basis of S₁ progeny performance is effective for selection additive genetic effects and presents an opportunity of selection against major deleterious recessive gene that become homozygous with breeding. (**Genter**, 1973)

The genetic gain upon selection has been one of the most important contribution of quantitative genetics to maize breeders. **Burton** *et al* (1971), **Smith** (1983), **Sadek** *et al* (1988) and **Soliman** (1991) reported that, change in genetic variance resulting from S₁ selection for grain yield and late wilt resistant was related to the observed change with a significant increase in population mean.

Heritability estimates differed according to population characters, selection methods and environmental factors. However, estimation of heritability from S₁ families selection method were higher than that estimated from the other selection methods (**Hanson** (1963), and **El-Agamy** *et al* (1992)). This is due to that, S₁ selection utilizes additive genetic effects as reported by **Genter** (1973), **Embig** *et al* (1972), **Galal** *et al* (1984).

This research was designed to:

- 1) Improve the yield of Gemmeiza yellow maize population by S_1 progeny selection cycle.
- 2) Provide informations about genetic variance, heritability values and expected genetic advance for S_1 progenies studied traits.
- 3) Compare the expected gain from selection with the actual one for grain yield trait.