

Development of Chitosan Films Capable of Sustained-Release of Heparin and Their Applications in Biocompatible Sensors

A Thesis

"Submitted for the degree of master of science as a partial fulfillment for requirements of the master of science"

Presented by

Amira Salim Hassaan

Supervised by

Prof. Dr. Ibrahim H. A. Badr

Prof. of analytical chemistry, Faculty of science, Ain Shams University

Dr. Abd Elnaby Mohamed Salem

Lecturer of inorganic chemistry, Faculty of science, Ain Shams University

Prof. Dr. Mohamed Gouda Abd Elhalim

Professor of Textile Chemistry and Technology Pretreatment and Finishing Department, Textile Research Division, National Research Center

Development of Chitosan Films Capable of Sustained-Release of Heparin and Their Applications in Biocompatible Sensors

Thesis Submitted by

Amira Salim Hassaan Afify

For the Degree of M.Sc. of Science in (Analytical Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Development of Chitosan Films Capable of Sustained-Release of Heparin and Their Applications in Biocompatible Sensors

Thesis Advisors	Thesis Approval
Prof.Dr. Ibrahim H. A. Badr	
Prof. of analytical chemistry, Faculty of Science, Ain Shams University	
Dr. Abd Elnaby Mohamed Salem Lecturer of inorganic chemistry, Faculty of Science, Ain Shams University	•••••••••••••••••••••••••••••••••••••••
Prof. Dr. Mohamed Gouda Abd E	lhalim
Prof. of Textile Chemistry and Technology, Pretreatment and Finishing Department, Textile National Research Center	Research Division,

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry Department

Ain Shams University Faculty of Science Chemistry Department

Development of Chitosan Films Capable of Sustained-Release of Heparin and Their Applications in Biocompatible Sensors

Thesis Advisors	Thesis Approval
Prof.Dr. Ibrahim H. A. Badr Prof. of analytical chemistry, Faculty of Science, Ain Shams University	•••••
Dr. Abd Elnaby Mohamed Salem Lecturer of inorganic chemistry, Faculty of Science, Ain Shams University	••••••
Prof. Dr. Mohamed Gouda Abd El Prof. of Textile Chemistry and Technology, Pretreatment and Finishing Department, Tex Research Center	
Thesis Reviewers	
Prof.Dr. Ragaa Elshikh Shohib Prof. Emeritus of analytical chemistry, Faculty of Science, Zagazig University	••••••
Prof.Dr. Mahmoud Sabry M. Rezq Prof. Emeritus of analytical chemistry, Faculty of Science, Zagazig University	
Prof.Dr. Ibrahim H. A. Badr Prof. of analytical chemistry, Faculty of Science, Ain Shams University	Head of Chemistry Departmen

Prof. Dr. Ibrahim H. A. Badr

<u>Dedication</u>

To my first tutor ever, to my beloved father, may Allah bless his soul

To my mother for her endless love, guidance, support & encouragement, without her I would not have been able to finish this work

To my husband for his support and encouragement

To my beloved son and my sisters

To my colleagues for their continuous support, encouragement, help and inspiration Mohamed, Raghda, Heba and Marwa.

ACKNOWLEDGEMENT

First and foremost, I would like to thank **Allah** for giving me the opportunity and well-power to accomplish this work

I would like to express my sincere gratitude and indebt to **Prof. Dr. Ibrahim H. A. Badr**, Prof. of Analytical Chemistry,
Chemistry Department, Faculty of Science, Ain Shams
University. my ideal, who has the inspiration for the whole thesis.
He is always kind enough to suggest the topics of research and to
follow up the progress of the work with keen interest, guidance
and whose efforts made this humble work possible. Thanks for
bearing up with me all those years.

Also, I wish to express my sincere gratitude **Dr. Mohamed Gouda Abd Elhalim**, Prof. of Textile Chemistry and
Technology, National Research Center. He always follows up the
progress of the work; he was always dedicated to pushing me
further, and offering help and advice, thanks for your support.

Furthermore, I wish to express my sincere gratitude to **Dr. Abd Elnaby M. Salem,** Lecturer. of inorganic Chemistry,
Chemistry Department, Faculty of Science, Ain Shams
University, for his efforts during this research work.

Amira Salim Hassaan Afify

List of Contents

Chapter one

1.GENERAL INTRODUCTION`	1
1.1.Principle of ISEs	5
1.2.Characterization of an ion selective electrode	9
1.2.1. Selectivity	9
1.2.2.Detection limit	14
1.2.3.Measuring range	17
1.2.4.Response time	18
1.3.Limitation of ISE in the in-vivo application	19
1.3.1.Interaction of blood with foreign materials	21
1.4.Strategies implemented to improve the blood compatibility of the polymeric material:	25
1.5.Chitosan	34
1.6.References	37

Chapter Two 46 2. SYNTHESIS AND CHARACTERIZATION OF HEPARIN-CHITOSAN-CuO NANOPARTICLE **MEMBRANE** 2-1. Introduction 46 2-2. Experimental 50 2.2.1. Materials 50 2.2.2. Preparation of CuONP 50 2.2.3. Preparation of the Chitosan membrane (CH) 51 2.2.4. Preparation of CH-CuO NPs membrane 51 2.2.5. Preparation of H-CH-CuO NPs membrane 52 2.2.6. Characterization of Prepared membranes 52 2-3. Results and discussion 53 2.3.1. Characterization of Heparin-Chitosan/CuO NPs membrane 53 2-4. Conclusion 64

65

2-5. References

Chapter Three

3. ENHANCING THE BIOCOMPATIBILITY OF	
SODIUM MEMBRANE ELECTRODES BY USING	
CHITOSAN-CUO AND CHITOSAN-CUO-HEPARIN	68
COMPOSITE MEMBRANES	
3.1. Introduction	68
3.2. Experimental	76
3.2.1. Reagents and Materials	76
3.2.2. Preparation Heparin-selective electrode	77
3.2.3. Study of released Heparin using Heparin-selective electrode	78
3.2.4. Preparation of conventional sodium selective poly (vinyl chloride) (PVC) membranes	78
3.2.5. Preparation of sodium selective membrane electrodes based on PVC, chitosan-CuO and modified with (CH-CuO-PVC), and Chitosan CuO-heparin (CH-CuO-H)	79
3.2.6. Biocompatibility studies	81
3.3. Results and discussion	82
3.4. Conclusion	110
3.5. References	112

List of Figures

Figure 1-1: The basic construction and the principle of	
operation of chemical sensors.	4
Figure 1-2: Schematic diagram of a typical membrane	
electrode measuring circuit and cell assembly	6
Figure 1-3: Representation of the separate solution	
method (SSM) vs. The fixed interference method	
(FIM), solid lines, response of the primary ions, dashed	
and dotted lines, monovalent and divalent interfering	
ions, respectively	14
Figure 1-4: Definition of the upper and lower detection	
limits of an ISE according to the IUPAC	17
recommendations	
Figure 1-5: A simplified scheme of blood–biomaterial	
interactions. Following protein adsorption, a range of	23
biochemical processes occur	
Figure 1-6: Chemical structures of chitosan	35
Figure 2-1: Chemical structure of Heparin	49

Figure 2-2: EDX-spectra of chitosan membrane, chitosan/CuONPs membrane and HeparinChitosan/CuONPs.	55
Figure 2-3: X-ray diffraction patterns of (a) chitosan membrane, (b) chitosan/CuONPs membrane and (c) Heparin-Chitosan/CuONPs.	57
Figure 2-4: FTIR of chitosan membrane(a), chitosan/CuONPs membrane (b) and Heparin-Chitosan/CuONPs (c)	59
Figure 2-5: TEM image of heparin-chitosan/CuO NPs	63
Figure 3-1: Schematic diagram for the three sets of sodium selective membrane electrodes used in this study: (a) conventional PVC, (b) CH-CuO-PVC, and (c) CH-CuO-H-PVC.	81
Figure 3-2: P Dynamic response time of heparin selective membrane electrodes toward increasing heparin concentration, as measured in 0.12 M NaCl	87
Figure 3-3: Potentiometric responses of heparin	
selective membrane electrodes as function time for CH-	
CuO-H A) 0.28 wt % B) 1.41 wt % C) 2.78 wt % henarin	89

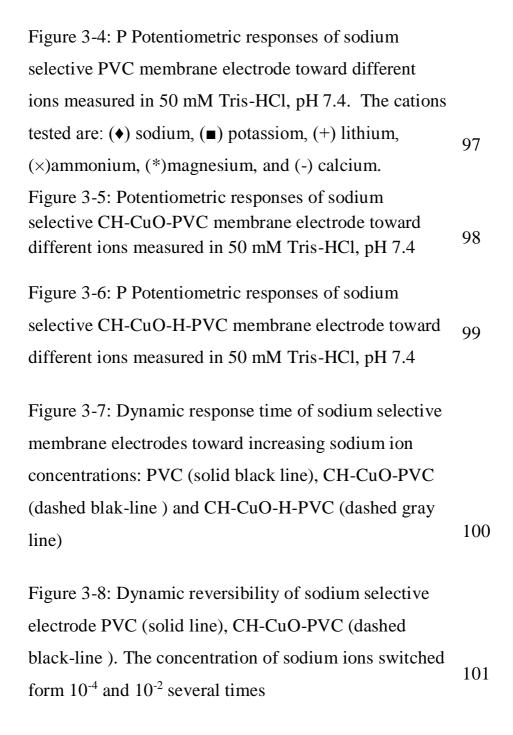


Figure 3-9: Scanning electron micrographs of various

membranes after 2-h contact with PRP: (A) PVC, (B)	108
CH-CuO, and (C) CH-CuO-H	
Figure 3-10: Platelet count for different membranes	
(PVC, CH-CuO, and CH-CuO-H) after 2 hours contact	109
with PR	

List of Tables

Table 2-1: Summarizes properties and applications of	29
the most commonly used polymers in biomedical field	
Table 3-1: Summary of calculations of released heparin	91
from different CH-CuO-H film.	
Table 3-2: Summary of response characteristics of	95
sodium membrane electrode	

List of abbreviations

IUPAC International Union of Pure and Applied

Chemistry

ISEs Ion selective electrodes

EMF Electromotive force

 K_{ij}^{pot} Selectivity coefficient

CH Chitosan membrane

THF Tetrahydrofuran

CPDA-1 Citrate phosphate dextrose adenine

PVC Polyvinyl chloride

CuONPs Copper oxide nanoparticles

CH-CuO Chitosan-CuO nanoparticles mambrane

CH-CuO-H Chitosan-CuO heparin

KTCIPB Potassium tetrakis(chlorophenyl)borate

TDMAC Tridodecyl methyl ammonium chloride

DOS Dioctyl sebacate

Tris Tris (hydroxymethyl) aminomethane

NA Not applicable.

SD Standard deviation

SEM Scanning electron microscopy

TEM Transmission electron microscopy

PRP Platelet-rich plasma

PBS Phosphate-buffered saline

NPOE o-nitrophenyl octy ether

CTA Cellulose triacetate