

Effect of short-term swim exercise on cardiac dysfunction induced by Doxorubicin in rats

Thesis

Submitted for Partial Fulfillment of Master Degree in **Physiology**

Presented By

Christina Magdy Wadie Elias

Demonstrator of physiology Faculty of Medicine, Ain Shams University

Supervisors

Prof. Dr. Faten Mahmoud Ali Diab

Professor of physiology Faculty of Medicine, Ain Shams University

Dr. Noha Abd Elaziz Hussien Nassef

Lecturer of physiology Faculty of Medicine, Ain Shams University

> Physiology Department Faculty of medicine, Ain Shams University 2017

Abstract

Background: Long-term exercise could confer protection Doxorubicin-induced cardiotoxicity and cardiomyopathy, yet, the effect of short-term exercise just prior to exposure to doxorubicin (Dox) is still unclear. **Aim:** To investigate the effect of short-term exercise on cardiac dysfunction induced by Dox treatment, also, to evaluate heat shock protein (HSP20) and oxidative status of cardiac tissue to clarify possible underlying mechanism (s) of such effect. Materials and Methods: Sixty nine female albino rats were assigned into 4 groups: Group 1: control (sedentary rats, n=17), Group 2: Dox (rats received single intraperitoneal injection of Dox in a dose of 20 mg/kg, and studied 24 hours later, n=18), Group 3: Exc (rats swim exercised 1 hour/day for 3 days, n=16), Group 4: Exc +Dox (rats exercised as in group 3 and received Dox injection as in group 2 on the third day and studied 24 hours later, n=18). Rats were subjected to recording of the ECG, measurement of arterial blood pressure, echocardiography, analysis of serum parameters of SGOT, LDH, CPK-MB, troponin I (cTnI) and evaluation of total antioxidant capacity, malondialdehyde (MDA) and Hsp20 in the cardiac tissue. Results: Compared to the control, Dox-treated rats showed significant prolongation of the observed QT (QT_o) and corrected QT (QT_c) interval, with insignificant depression of the R voltage and the elevation of systolic (SBP), diastolic (DBP), mean (MAP) blood pressures were statistically insignificant. These changes were accompanied by significant elevation of serum SGOT and significant increases in cardiac tissue MDA and Hsp20. Also, compared to the control, rats exposed to 3 days exercise just before Dox injection (Exc+Dox) showed significant prolongation of both QT_o and the QT_c even more than Dox group. However, the depression of the R voltage and the elevation of the SBP, DBP, and MAP become statistically significant compared to the control. These changes were associated with significant increase in SGOT together with insignificant changes in MDA and Hsp20. However, compared to Dox group, the Exc+Dox demonstrated significant prolongation in both QTo and the QTc, significant reduction in both the ejection fraction and the fraction of shortening together with significant reductions in MDA and HSP20. Conclusion: Short-term swim exercise training just prior to doxorubicin exposure is risky and makes the heart more predisposed to arrhythmia despite of the relative improvement in cardiac oxidative status.

Key words: Doxorubicin, cardiac dysfunction, exercise, HSP20.

Heknowledgment

First of all, I wish to offer my deepest gratitude to GOD for enabling me to achieve this work.

I would like to express my deepest gratitude to Prof. Dr. Faten Diab, Professor of Physiology, faculty of medicine, Ain Shams University for her help, supervision, encouragement and support which assisted me greatly in completing this study.

I would like to express my everlasting thanks to Dr. Noha Abd Elaziz, Lecturer of Physiology, Faculty of Medicine, Ain Shams University for her kind supervision, help and continuous support which helped me greatly to accomplish this work.

I would like to express my appreciation to Dr. Ramadan Mohamed Ahmed, Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, for his valuable help, and continuous advice during the practical work of the study.

Last but not least, I would like to thank my sister Marina Magdy for her help.

Finally great thanks and appreciation will not be enough to express my feelings to my husband, family, colleagues and staff members in physiology department, Faculty of Medicine, Ain Shams University.

Contents

Subjects Page	
List of abbreviations	i
List of tables	iii
List of figures	viii
• Introduction	1
Aim of the work	3
• Review of Literature	
♦ Doxorubicin	4
♦ Exercise	14
♦ Relation between doxorubicin, heat shock	
protein and cardiovascular system	19
Materials and Methods	26
• Results	53
• Discussion	105
Summary and Conclusion	125
• References	129
Arabic Summary	

List of Abbreviations

Dox	Doxorubicin
Exc	Exercise
4-HNE	4-Hydroxynonenal-modified proteins
CPK-MB	Creatine phosphokinase
cTnI	Cardiac troponin I
DPB	Diastolic blood pressure
ECG	Electrocardiogram
Echo	Echocardiograph
FoxO	Forkhead-box O
GPX	Glutathione peroxidase
H_2O_2	Hydrogen peroxide
HR	Heart rate
Hsp	Heat shock protein
I/R	Ischemia/Reperfusion
$_{\mathbf{i}}\mathbf{BW}$	Initial body weight
$_{\mathbf{f}}\mathbf{BW}$	Final body weight
EF%	Ejection fraction
FS%	Fraction of shortening
ip	Intra-peritoneal
LDH	Lactate dehydrogenase
LV	Left ventricular
LVDA	Left ventricular diastolic area
LVSA	Left ventricular systolic area
LVEDD	Left ventricular end diastolic diameter
LVESD	Left ventricular end systolic diameter
MMPs	Matrix metalloproteinase
MAP	Mean blood pressure
MAP.HR	Mean arterial blood pressure heart rate product
MDA	Malondialdehyde
MI	Myocardial infarction
O_2	Superoxide ion
PGC-1	peroxisome proliferator-activated receptor-gamma coactivator-1 alpha

i

Q-T _o	Observed Q-T interval
Q-T _c	Corrected Q-T interval
SBP	Systolic blood pressure
SGOT	Serum glutamic oxaloacetic transaminase
sHR	Simultaneously recorded heart rate (with arterial blood pressur)
SOD	Superoxide dismutase
SR	Sarcoplasmic reticulum
T.antioxidant	Total antioxidant capacity
WH	Whole heart

List of Tables

	Tables	Page
Tables of the review		
Table 1	Protective roles of heat shock proteins	21
	Tables of the results	
Table 2	Values of initial body weights (iBW,g), final body weights (fBW,g), absolute cardiac weights (mg) and cardiac weight indices (mg/g) of atria (AT), right ventricle (RV), left ventricle (LV) and whole heart (WH) and right ventricle/left ventricle ratio (RV/LV) in control (sedentary + saline) group of rats.	61
Table 3	Values of initial body weights (_i BW,g), final body weights (_f BW,g), absolute cardiac weights (mg) and cardiac weight indices (mg/g) of atria (AT), right ventricle (RV), left ventricle (LV) and whole heart (WH) and right ventricle/left ventricle ratio (RV/LV) in doxorubicin-treated (Dox) group of rats.	62
Table 4	Values of initial body weights (iBW,g), final body weights (fBW,g), absolute cardiac weights (mg) and cardiac weight indices (mg/g) of atria (AT), right ventricle (RV), left ventricle (LV) and whole heart (WH) and right ventricle/left ventricle ratio (RV/LV) in swim-exercised (Exc) group of rats.	63
Table 5	Values of initial body weights (¡BW,g), final body weights (¡BW,g), absolute cardiac weights (mg) and cardiac weight indices (mg/g) of atria (AT), right ventricle (RV), left ventricle (LV) and whole heart (WH) and right ventricle/left ventricle ratio (RV/LV) in swim-exercised doxorubicin-treated (Exc+Dox) group of rats.	64
Table 6	Mean values of initial body weight (¡BW,g) and final body weight (¡BW,g) in control, doxorubicin-treated (Dox), swim-exercised (Exc) and swim-exercised	65

	Tables	Page
	doxorubicin-treated (Exc+Dox) rat groups.	
Table 7	Mean values of absolute cardiac weights (mg) and cardiac weight indices (mg/g) of atria (AT), right ventricle (RV), left ventricle (LV) and whole heart (WH) and (RV/LV) ratio in control, dororubcin-treated (Dox), swim-exercised (Exc) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	66
Table 8	Values of the heart rate (HR, bpm), R voltage (R, μ volt) and [P-R interval, QRS duration, observed Q-T (Q-T _o) and corrected Q-T (Q-T _c), msec] in control (sedentary + saline) group of rats.	67
Table 9	Values of the heart rate (HR, bpm), R voltage (R, μ volt) and [P-R interval, QRS duration, observed Q-T (Q-T _o) and corrected Q-T (Q-T _c), msec] in doxorubicin-treated (Dox) group of rats.	68
Table 10	Values of the heart rate (HR, bpm), R voltage (R, μ volt) and [P-R interval, QRS duration, observed Q-T (Q-T _o) and corrected Q-T (Q-T _c), msec] in swimexercised (Exc) group of rats.	69
Table 11	Values of the heart rate (HR, bpm), R voltage (R, µvolt) and [P-R interval, QRS duration, observed Q-T (Q-T _o) and corrected Q-T (Q-T _c), msec] in swimexercised doxorubicin-treated (Exc+Dox) group of rats.	70
Table 12	Mean values of heart rate (bpm), R voltage (μvolt), PR interval, QRS duration, observed Q-T, and corrected [Q-T _c] interval (msec) in control, dororubcin-treated (Dox), swim-exercised (Exc) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	71
Table 13	Values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure (mmHg), simultaneously recorded heart rate (sHR, bpm) and mean blood pressure heart rate product (MBP.HR, mmHg×10 ² ×min ⁻¹) in control (sedentary + saline) group of rats.	76

Tables	Page
Values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure (mmHg), simultaneously recorded heart rate (sHR, bpm) and mean blood pressure heart rate product (MBP.HR, mmHg×10 ² ×min ⁻¹) in doxorubicin-treated (Dox) group of rats.	77
Values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure (mmHg), simultaneously recorded heart rate (sHR, bpm) and mean blood pressure heart rate product (MBP.HR mmHg×10 ² ×min ⁻¹) in swim-exercised (Exc) group of rats.	78
Values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure (mmHg), simultaneously recorded heart rate (sHR, bpm) and mean blood pressure heart rate product (MBP.HR mmHg×10 ² ×min ⁻¹) in swim-exercised doxorubicintreated (Exc+Dox) group of rats.	79
Mean values of systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure (mmHg) and simultaneously recorded heart rate(sHR, bpm) and arterial blood pressure heart rate product (mmHg×10 ² ×min ⁻¹) in control, dororubcin-treated (Dox), swim-exercised (Exc) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	80
Values of serum glutamic oxaloacetic transaminase (SGOT, U/ml), cardiac troponin I (cTnI, ng/ml), lactate dehydrogenase (LDH, U/L) and creatine phosphokinase (CBK-MB,U/L) in control (sedentary + saline) group of rats.	83
Values of serum glutamic oxaloacetic transaminase (SGOT, U/ml), cardiac troponin I (cTnI, ng/ml), lactate	84

	Tables	Page
	dehydrogenase (LDH, U/L) and creatine phosphokinase (CBK-MB,U/L) in doxorubicin-treated (Dox) group of rats.	
Table 20	Values of serum glutamic oxaloacetic transaminase (SGOT, U/ml), cardiac troponin I (cTnI, ng/ml), lactate dehydrogenase (LDH, U/L) and creatine phosphokinase (CBK-MB, U/L) in swim-exercised (Exc) group of rats.	85
Table 21	Values of serum glutamic oxaloacetic transaminase (SGOT, U/ml), cardiac troponin I (cTnI, ng/ml), lactate dehydrogenase (LDH, U/L) and creatine phosphokinase (CBK-MB, U/L) in serum of swimexercised doxorubicin-treated (Exc+Dox) group of rats.	86
Table 22	Values of malondialdehyde (MDA, pmol/g tissue), total antioxidant capacity (T. antioxidant, umol/g) and heat shock protein20 (Hsp20, ng/g) in cardiac tissues of control (sedentary + saline) group of rats.	87
Table 23	Values of malondialdehyde (MDA, pmol/g tissue), total antioxidant capacity (T. antioxidant, umol/g) and heat shock protein20 (Hsp20, ng/g) in cardiac tissues of doxorubicin-treated (Dox) group of rats.	88
Table 24	Values of malondialdehyde (MDA, pmol/g tissue), total antioxidant capacity (T. antioxidant, umol/g) and heat shock protein (Hsp20, ng/g) in cardiac tissues of swim-exercised (Exc) group of rats.	89
Table 25	Values of malondialdehyde (MDA, pmol/g tissue), total antioxidant capacity (T. antioxidant, umol/g) and heat shock protein20 (Hsp20, ng/g) in cardiac tissues of swim-exercised doxorubicin-treated (Exc+Dox) group of rats.	90
Table 26	Mean values of serum glutamic oxaloacetic transaminase (SGOT, U/ml), cardiac troponin I (cTnI,	91

	Tables	Page
	ng/ml), lactate dehydrogenase (LDH, U/L) and creatine phosphokinase (CPK-MB, U/L) in control, dororubcintreated (Dox), swim-exercised (Exc) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	
Table 27	Mean values of cardiac tissue malondialdehyde (MDA, pmol/g tissue), total antioxidant capacity (T.antioxidant, umol/g) and heat shock protein 20 (Hsp20, ng/g) in control, dororubcin-treated (Dox), swim-exercised (Exc) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	92
Table 28	Values of cardiographic parameters (ejection fraction, EF%) and (fraction of shortening, FS%) in doxorubicin-treated (Dox) and swim-exercised doxorubicin-treated (Exc+Dox) group of rats.	97
Table 29	Mean values of ejection fraction (EF, %) and fraction of shortening (FS, %) in dororubcin-treated (Dox) and swim-exercised doxorubcin-treated (Exc+Dox) rat groups.	98

List of Figures

	Title	Page
Figure 1	Activation of Hsps in cardiac stress. Stress signals to the heart elicit transcription and subsequent translation of Hsps.	22
Figure 2	The concentrations of SGOT.	34
Figure 3	The concentrations of cTnI.	37
Figure 4	The concentrations of Hsp20.	48
Figure 5	Heart rate in different studied rat groups.	73
Figure 6	R voltage in different studied rat groups.	73
Figure 7	P-R interval in different studied rat groups.	74
Figure 8	QRS complex in different studied rat groups.	74
Figure 9	QT- _o interval in different studied rat groups.	75
Figure 10	QT- _C in different studied rat groups.	75
Figure 11	Systolic blood pressure (SBP) in different studied rat groups.	81
Figure 12	Diastolic blood pressure (DBP) in different studied rat groups.	81
Figure 13	Mean arterial blood pressure (MAP) in different studied rat groups.	82
Figure 14	Simultaneously recorded heart rate (sHR) in different studied rat groups.	82

	Title	Page
Figure 15	Serum glutamic oxaloacetic transaminase (SGOT) in different studied rat groups.	93
Figure 16	Cardiac troponin I (cTnI) in different studied rat groups.	93
Figure 17	Lactate dehydrogenase (LDH) in different studied rat groups.	94
Figure 18	Creatinephosphokinase (CPK-MB) in different studied rat groups.	94
Figure 19	Cardiac tissue malondialdehyde (MDA) in different studied rat groups.	95
Figure 20	Cardiac tissue total antioxidant capacity (T.antioxidant) in different studied rat groups.	95
Figure 21	Cardiac tissue heat shock protein 20 (Hsp20) in different studied rat groups.	96
Figure 22	Ejection fraction (A) and fraction of shortening (B) in Dox and Exc+Dox groups	99
Figure 23	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and left ventricular/body weight (LV/BW).	100
Figure 24	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and systolic blood pressure (SBP).	100
Figure 25	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and mean blood pressure (MBP).	101
Figure 26	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and observed QT (QT-O).	101
Figure 27	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and corrected	102

	Title	Page
	QT (QT- _C) in all rat groups.	
Figure 28	Correlation between serum glutamic-oxaloacetic transaminase (SGOT) and total antioxidant capacity (T.Antioxidant) in all rat groups.	102
Figure 29	Correlation between ejection fraction (EF) and simultaneously recorded heart rate (sHR) in all rat groups.	103
Figure 30	Correlation between fraction of shortening (FS) and simultaneously recorded heart rate (_s HR) in all rat groups.	103
Figure 31	Correlation between observed QT (QT- _O) and systolic blood pressure (SBP) in all rat groups.	104

Plate (1): ECG record in the four different groups; control, Dox, Exc & Exc+Dox groups.

Introduction

Many scientific evidences link regular physical activity to various measures of cardiovascular health (**Fletcher et al., 2001**) and consider the sedentary lifestyle as one of the major cardiovascular risk factors.

Doxorubicin; quinone containing anthracycline antibiotic, is one of the most frequently used chemotherapeutic drug against most of solid tumors and hematological malignancies (Cortes-Funes and Coronado, 2007). Unfortunately, the clinical use of this valuable drug is limited due to its dose-dependent lifethreatening side effects especially on the heart (Singal and Iliskovic, 1998). In this regard, it had been reported that doxorubicin (Dox) stimulates reactive oxygen species (ROS) generation by the mitochondria that leads to generation of a free radical cascade with potent oxidizing power (Wallace, 2003). Regrettably, the level of Dox-induced oxidative stress on the heart is up to 10 times greater than other tissues as the liver or the kidney, because the heart exhibits low level of the antioxidant enzymes which detoxifies the H₂O₂ (Siveski-Iliskovic et al., **1995).** Thus, the oxidative injury of the heart is the widely accepted theory presumed as a primary mechanism of Doxinduced cardiotoxicity (Mukherjee et al., 2003).