Effect of Autologous Fibrin Gel and Platelet Rich Plasma activated by Ozone versus those activated by Calcium Chloride on wound healing and prevention of infection in High Risk Cesarean Sections: Randomized Controlled Study

Thesis

Submitted for Partial Fulfillment of the Requirements of master degree in Obstetrics and Gynecology

M.B.B.CH, Alexandria University (2009) Obstetrics and gynecology resident, Maternity Hospital, Alexandria

Under supervision of

Prof. Mohamed El-Mandooh Ibrahim

Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University

Dr. Waleed Mohmed Khalaf

Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University

> Ain Shams University, Cairo, Egypt

> > 2017

First and foremost, I feel always indebted to **Allah**, the most kind and the most merciful.

I would like to express my sincere gratitude to **Prof. Mohamed El-Mandooh Ibrahim**, professor of Obstetrics and Gynecology, Faculty of Medicine - Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, his guidance and support.

I wish also to express my gratitude to **Dr. Waleed Mohmed Khalaf**, Lecturer of Obstetrics and Gynecology,
Faculty of Medicine - Ain Shams University, for his great
efforts, kind advice, support and encouragement throughout
the whole work.

To the soul of my father, my dear mother, my kindest brother and sister, the most helpful husband ever, my cute daughter and son, my unit, my colleagues, my patients and to everyone who participated in one way or another in this work, I owe my thanks and appreciation.

CONTENTS

Page
I
III
IV
1
4
5
5
5
6
7
7
8
9
10
12
12
13
14
14
15

Platelets function in wound healing	17
PRP in wound healing	20
PRP in Hemostasis	21
Platelet gel growth factors	25
PRP in practice	30
Fibrin gel	34
Chapter 3: Medical Ozone Therapy	38
History of Ozone Therapy	39
Mechanism of Action	42
Advantages of Ozone Therapy	44
Disadvantages of ozone therapy	45
Ozone Therapy in Practice	47
Ozone Therapy in Wound Healing and Infection	49
Ozone and PRP Activation	58
Ozonated PRP	58
Patients and Methods	61
Results	72
Discussion	83
Conclusion	94
Recommendations	95
Summary	96
References	102
Arabic Summary	

LIST OF ABBREVIATIONS

PRP : Platelet Rich Plasma

GFs : Growth Factors

MSC : Mesenchymal Stem Cells

CaCl₂ : Calcuim Cloride

PGF : Platelet Growth Factor

CS : Cesarean Section

WHO : World Health Organization

BMI : Body Mass Index
DM : Diabetes Mellitus

ACOG : American College of Obstetricians and Gynecologists

TGF-β : Transforming Growth Factor betaTGF-α : Transforming Growth Factor alpha

ADP : Adenosine Di Phosphate **ATP** : Adenosine Tri Phosphate

PDGFs : Platelet Derived Growth Factors

IL-1 : Interleukin-1

FGF : Fibroblast Growth Factor EGF : Epidermal Growth Factor

VEGF : Vascular Endothelial Growth Factor

BMPs : Bone Morphogenic Proteins

PG : Platelet Gel

TKR : Tyrosine Kinase Receptor

bFGF : Basic Fibroblast Growth Factor

CTGF : Connective Tissue Growth Factor

PR : Prospective Randomized

R-case : Retrospective case

PR-B : Prospective Randomized Blinded
P-contr : Prospective study with controls

R-contr : Retrospective study with control patients

P-control-B: Prospective consecutive study, single Blinded

M-F : Maxillo-Facial surgery

WC : Wound Care
SS : Spinal Surgery
ES : Eye Surgery

OS : Orthopedic Surgery

CTS : Cardio Thoracic SurgeryVAS : Visual Analogue Scale

REEDA : Redness Ecchymosis Edema Discharge Approximation

VSS : Vancouver Scar Scale

O₃ : Ozone gas

AHT : Autohemotherapy

LOP : Lipid Ozonation Products

NO₂ : Nitrous Oxide

AAP : Arachidonic Acid Peroxides

LP : Lipid Peroxidation

AOS : Antioxidant Defense System

LIST OF TABLES

Table		Page
Table (1)	Synopsis of growth factors present in PRP.	29
Table (2)	Clinical human in vivo studies concerning	
	autologous PG application	32
Table (3)	The chronological use of ozone in medicine	41
Table (4)	Status of infection and wound evaluation (sessions	
	1 to 36).	57
Table (5)	Demographic characteristics of the three study	
	groups.	72
Table (6)	Obstetric history of the three study groups.	73
Table (7)	Frequency of previous pregnancies, labors,	
	abortions and cesarean sections of the three study	
	groups.	74
Table (8)	Prevalence of risk factors for wound complications	
	in the three study groups	75
Table (9)	VAS score in the three study groups	76
Table (10)	REEDA score in the three study groups	78
Table (11)	VSS score in the three study groups	79
Table (12)	Incidence of wound infection in the three study	
	groups	80
Table (13)	Relative risk and number needed to treat for the	
	incidence of wound infection	82

LIST OF FIGURES

Figures		Page
Figure (1)	Schematic overview of a resting and activated platelet.	16
Figure (2)	The different cascade stages in hemostasis after tissue injury.	18
Figure (3)	Schematic illustration of the role of PDGFs (numbers indicate the sequence of actions) during the different stages of the wound healing process (VEGF, vascular endothelial growth factor).	24
Figure (4)	Diagram showing the mechanism by which PGF binds to the tyrosine kinase receptor.	27
Figure (5)	Action of ozone on RBC Metabolism	43
Figure (6)	The effects of ozonated olive oil on clinical wound closure.	51
Figure (7)	Masson-trichrome staining of the wound bed and the edge of the injury site on days 3 and 7.	52
Figure (8)	Immunohistochemical staining for FGF, PDGF, TGF-β, and VEGF on day 7.	53
Figure (9)	Condition of wound before starting ozone therapy	55
Figure (10)	Condition of wound after 15 sessions.	56
Figure (11)	Condition of wound after 25 sessions	56

Figures		Page
Figure (12)	Condition of wound after 36 sessions.	57
Figure (13)	Shows that incubation of PRP collected in heparin, untreated (control) or exposed to O_2 or O_2/O_3 dramatically increased the release of platelet growth factors compared to the basal level.	60
Figure (14)	Prevalence of risk factors for wound complications in the three study groups.	75
Figure (15)	Box plot showing the VAS score in the three study groups. Box represents the range from the 1st quartile to 3rd quartile (interquartile range).	77
Figure (16)	Box plot showing the REEDA score in the three study groups. Box represents the range from the 1st quartile to 3rd quartile (interquartile range).	78
Figure (17)	Box plot showing the VSS score in the three study groups. Box represents the range from the 1st quartile to 3rd quartile (interquartile range).	79
Figure (18)	Incidence of wound infection in the three study groups.	80

Effect of Autologous Fibrin Gel and Platelet Rich Plasma activated by Ozone versus those activated by Calcium Chloride on wound healing and prevention of infection in High Risk Cesarean Sections: Randomized Controlled Study

Protocol of thesis

Submitted for partial fulfillment of the requirements of master degree in obstetrics and gynecology

By Marwa Said Mahmoud Wanas

M.B.B.CH, Alexandria University (2009)
Obstetrics and gynecology resident, Maternity Hospital,
Alexandria

Under supervision of **Prof. Mohamed El-Mandooh Ibrahim**

Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University

Dr. Waleed Mohmed Khalaf

Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University

> Ain Shams University Cairo, Egypt 2017

INTRODUCTION

Cesarean delivery, one of the most common major surgical procedures performed worldwide used for 15% of births around the world and it continues to increase in frequency. (**Betran et al., 2007**)

It is an important contributor to surgical site complications such as infection, hematoma, seroma, dehiscence, and pain.

Several risk factors affect the wound healing process in cesarean sections, including: (1) twin birth, (2) chronic systemic disease (diabetes, hypertension, and immune deficiencies), (3) obesity, (4) previous incision, (5) corticosteroid therapy, (6) immunosuppression treatment, and (7) anemia. (Andrews et al. 2007)

Platelet Rich Plasma (PRP) is a volume fraction of blood having a high concentration of platelets above the baseline that markedly improves the adhesive properties and the process of wound healing. (Mehta and Watson, 2008)

When the platelets are activated, various growth factors (GFs) and other bioactive proteins are released and those proteins augment tissue repair and regeneration processes. (Takikawa et al, 2011)

In vitro studies on the proliferation of mesenchymal stem cells (MSC) confirmed that PRP improves MSC proliferation and differentiation, suggesting a high regenerative potential of PRP. (Mishra et al, 2009)

When platelet rich plasma is combined with thrombin and calcium chloride, platelet gel is created. This product is a rich source of growth factors. (Oz et al, 1993)

Autologous fibrin glue (gel) mimics the last steps in the coagulation cascade with the conversion of fibrinogen to fibrin with the help of thrombin and calcium, helping cross-link the fibrin into a stable clot. Therefore, helps achieve hemostasis even in the presence of coagulation defects. (**Tawes et al, 1990**)

The role of autologous fibrin glue is to obtain hemostasis and "glue down" the wound edges.(Oz et al, 1992)

PRP is activated endogenously when it comes in contact with collagen or exogenously before injection commonly by: thrombin, CaCl₂ or medical Ozone.(**Ruhi Cakir, 2014**)

There is no evidence of wound infections after PRP applications have been reported, although the preparation of PRP demands many processing steps, and thus theoretically, there is the possibility of contamination. (**Kevy and Jacobson, 2004**)

Therapeutic medical Ozone is a mixture of pure oxygen and ozone in micrograms doses. It can kill all kinds of bacteria, viruses and molds by 99.9%. (**Ruhi Cakir, 2014**)

Incubation (2 h) of PRP with medical Ozone increases the basal concentration of Platelet Growth Factor (PGF) approximately 600%. The broad beneficial effect of ozone has become evident in orthopedics, cutaneous and mucosal infections. The induction of PGF and other growth factors by ozone can support and potentiate those applications. (Martínez-Sánchez et al, 2010)

AIM OF THE STUDY

The purpose of this study is to compare the effect of application of autologous Fibrin Gel and Platelet Rich Plasma (PRP) activated by medical Ozone (Ozonated PRP) versus those activated by CaCl₂ on wound healing and prevention of infection in high risk cesarean sections.

Research hypothesis

In high risk women undergoing cesarean section, application of ozonated PRP and fibrin gel may be similar to those activated by CaCl2 in wound healing and prevention of infection.

Research Question

In high risk women undergoing cesarean section, does application of ozonated PRP and fibrin gel may be similar to those activated by CaCl₂ in wound healing and prevention of infection?