

SECURE AND EFFICIENT KEY MANAGEMENT IN AD-HOC NETWORKS

Thesis Submitted as a Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy of Computer Science

By

Walid Ibrahim Ibrahim Khedr

Teaching Assistant at Computer Science Department Faculty of computers and Informatics Zagazig University

Under Supervision of

Prof. Dr. Ahmed Mohamed Hamad

Dean of Faculty of Information Systems and Computer Science October 6 University

Prof. Dr. Mohamed Abas Shouman

Dean of the Faculty of Computer and Informatics Zagazig University

Prof. Dr. Taha Ibrahim El Areef

Prof. of Computer Science Computer Science Department Faculty of Computer and Information Sciences Ain Shams University

ACKNOWLEDGMENTS

Special thanks to my advisor, Prof. Ahmed Mohamed Hamad, for his unfailing support and guidance. I am also grateful to Prof. Mohamed Abbas Shouman and Prof. Taha Ibrahim El Areef for their guidance.

Contents

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF SYMBOLS	viii
LIST OF ABBREVIATIONS	X
ABSTRACT	xi
1. Introduction	1
1.1. General Problem Statement	
1.2. The Goal of the Thesis	
1.3. System Model	4
1.4. Research Method	
1.5. Thesis Organization	7
2. Background	8
_	
2.1. Mathematical Backgrounds	
2.1.1. Elliptic Curve Groups	
2.1.2. CRT and MRC	
2.2.1. Elliptic Curve Cryptography	
2.2.2. Key Management	
2.2.2. Key Management	20
3. Related Work	22
3.1. Introduction	22
3.2. Classification of Ad-hoc Group Key Management	
3.2.1. Centralized Group Key Management Protoco	
3.2.2. Distributed Key Management	
3.3. Partially Distributed Certification Authority	
3.3.1. Signing Certificate	
3.3.2. Renewing Certificate	
3.3.3. Certificate Retrieval	28
3.3.4. Share Refreshing	28
3.3.5. Analysis	29
3.4. Fully Distributed Certification Authority	31
3.4.1. Certificate Renewal	
3.4.2. Certificate Revocation	
3.4.3. Analysis	
3.5. Self Issued Certificates	
3.5.1. Small World Phenomenon	
3.5.2. Shortcut Hunter Algorithm	
3.5.3. Analysis	
3.6. Group Diffie-Hellman Key Agreement Protocol	38

<u>Contents</u> <u>ii</u>

	3.6.1.	Analysis	39
	3.7. Clic	ques Protocol Suite	40
	3.7.1.	IKA	41
	3.7.2.	Join/Merge	41
	3.7.3.	Leave/Partition	42
	3.7.4.	Analysis	43
	3.8. Skii	nny Tree (STR) Protocol	44
	3.8.1.	Setup	45
	3.8.2.	Join/Merge	46
	3.8.3.	Leave/Partition	47
	3.8.4.	Analysis	48
	3.9. Tre	e Group Diffie-Hellman (TGDH) Protocol	50
	3.9.1.	Setup	52
	3.9.2.	Join/Merge	52
	3.9.3.	Leave/Partition	53
	3.9.4.	Analysis	55
4.	Key Exc	change Algorithms Based on ECC and MRC	57
	4.1. Intr	oduction	57
		up Phase	
		key Agreement Protocol (KAP)	
		e Key Transport Protocol (KTP)	
	4.4.1.	Elliptic Curve Diffie-Hellman Key Exchange	
	4.4.2.	The Mixed Radix Conversion	
	4.4.3.	The Mixed Radix Key Transport Protocol	64
	4.5. Noc	de Authentication Protocol	66
	4.6. The	proposed Key Exchange Algorithm	68
	4.7. Cor	nclusion	70
5.	Kev Esta	ablishment Based on Local Broadcast and Transitive Authenticatio	on 71
	·	oduction	
		Network Leader Election Protocol (NLEP)	
		Network Leader Confirmation Protocol (NLCP)	
		Network Key Establishment Protocol (NKEP)	
		e Groups Key Establishment Protocol (GKEP)	
		work Membership Operations	
	5.6.1.	Join	
	5.6.2.	Leave	
	5.6.3.	Termination	
	5.7. Cor	nclusion	
6.	Ad has	On-Demand Authentication Chain Protocol	110
		oduction	
		Authentication Chain Discovery Protocol (AOAC)	
	6.2.1.	Authentication Chain Discovery Protocol	
	6.2.2.	Transitive Authentication Protocol	
	6.3. Clas	ssification of the AOAC Protocol	130

<u>Contents</u> <u>iii</u>

7. Di	scussion and Analysis	140
7.1.	Introduction	140
7.2.	Formal analysis using the GNY Logic	
	2.1. Statements	
7.2	2.2. Logical Postulates	
7.3.	Security Analysis	
7.3	3.1. Security Analysis of ECDB protocol	
7.3	3.2. Security Analysis of MRKA protocol	
7.3	3.3. Security Analysis of TAP protocol	
7.4.	Performance Analysis	
7.4	I.1. Simulation	171
7.4	1.2. Complexity Analysis	
7.4	4.3. Complexity Comparison	
8. Co	onclusion and Future Work	193
8.1.	Concluding Remarks	193
8.2.	Future Research	
REFER	RENCES	197

<u>Tables</u> iv

LIST OF TABLES

Table 3.1: Cliques IKA Analysis	43
Table 3.2: Cliques Join Analysis	44
Table 3.3: Cliques Merge Analysis	44
Table 3.4: Cliques Leave Analysis	44
Table 3.5: Cliques Partition Analysis	44
Table 3.6: : STR Setup Analysis	49
Table 3.7: STR Join Analysis	49
Table 3.8: STR Merge Analysis	49
Table 3.9: STR Leave Analysis	50
Table 3.10: STR Partition Analysis	50
Table 3.11: TGDH Setup Analysis	56
Table 3.12: TGDH Join Analysis	56
Table 3.13: TGDH Merge Analysis	56
Table 3.14: TGDH Leave Analysis	56
Table 3.15: TGDH Partition Analysis	56
Table 7.1: Used GNY statements.	142
Table 7.2: Simulation parameters	172
Table 7.3: Simulation result for $N = 100$	173
Table 7.4: Simulation result for $N = 200$	173
Table 7.5: Simulation result for $N = 300$	173
Table 7.6: Simulation result for $N = 400$	174
Table 7.7: Simulation result for $N = 500$	174
Table 7.8: Simulation result for $N = 600$	174
Table 7.9: Simulation result for $N = 700$	175
Table 7.10: Simulation result for $N = 800$	175
Table 7.11: Simulation result for $N = 900$	175
Table 7.12: Simulation result for $N = 1000$	176
Table 7.13: The average of our simulation results for all <i>N</i>	176
Table 7.14: Comparison Table of The Key Management Protocols	191

Figures

LIST OF FIGURES

Figure 1.1: Research focus	5
Figure 1.2: Node <i>A</i> and <i>B</i> are within the transmission range of each other	6
Figure 1.3: Node A and B are out of the transmission range of each other	6
Figure 1.4: Research Method	7
Figure 2.1: Elliptic curve $y^2 = x^3 - 4x + 0.67$	9
Figure 2.2: Adding two distinct points P and Q with $-P \neq Q$ on elliptic	curve
$y^2 = x^3 + 7x$	10
Figure 2.3: Adding two distinct points P and Q with $-P = Q$ on elliptic	curve
$y^2 = x^3 + 6x + 6$	11
Figure 2.4: Doubling the point P with $y_p \neq 0$ on elliptic curve $y^2 = x^3 - 3x + 5$	12
Figure 2.5: Procedures of Embedding Random Point on Elliptic Curve E	18
Figure 2.6: Elliptic Curve Diffie-Hellman (ECDH) [15]	20
Figure 2.7: Simplified classification of key Management Techniques	21
Figure 3.1: Group Key Management Requirements	23
Figure 3.2: Membership Operations in Ad-hoc Networks	24
Figure 3.3: System architecture with 3 server nodes, 3 clients and 1 combiner	27
Figure 3.4: Share refreshing of a (n, t+1) sharing [22]	29
Figure 3.5: Example of a certificate chain	33
Figure 3.6: Building certificate chains using only locally stored certificates	34
Figure 3.7: Example of the small-world phenomenon	34
Figure 3.8: Example of a shortcut in a small-world	35
Figure 3.9: Small-world graph modeling certificates and users	36
Figure 3.10: Initial problem of certificate propagation.	38
Figure 3.11: STR key tree [33]	45
Figure 3.12: An example of STR join [33]	46
Figure 3.13: An example of STR leave [33]	48
Figure 3.14: Tree notations for the TGDH protocol [36]	50
Figure 3.15: Join Protocol [36]	52
Figure 3.16: Tree update in a join operation [36]	53
Figure 3.17: Tree update in a leave operation [36]	54
Figure 3 18: Leave Protocol [36]	54

<u>Figures</u> vi

Figure 4.1: Each node send BS a list of its immediate neighbors
Figure 4.2: The network is partitioned into M groups with BS as their leader59
Figure 4.3: Group G_j 's members establish the ECBD key agreement protocol6
Figure 4.4: Group G_j 's members establish the MRKT protocol
Figure 4.5: Node Authentication Protocol
Figure 5.1: Our Proposed Key Establishment Protocol Layers
Figure 5.2: Node N_1 locally broadcasts a list of its immediate neighbors
Figure 5.3: Node N_0 receives five <i>INMs</i> and constructs its adjacency matrix J_{N_0} that
represents g_{N_0}
Figure 5.4: Node N_0 calculate its maximum clique $q_{\text{max}}^{N_0}$ using J_{N_0}
Figure 5.5: Node N_0 broadcasts a RNM
Figure 5.6: WG members broadcast a RCM to all nodes
Figure 5.7: WG members send a KEP to the network leader
Figure 5.8: The Network Key Establishment Protocol
Figure 5.9: N_0 performs key establishment with the two groups it leads, then locally
broadcast (TTL=1) $(K^R \parallel KT_{N_0})$ to each group encrypted by the corresponding group
key8
Figure 5.10: L generate both the shared and termination keys of N_j on demand using
<i>N</i> _j 's public key
Figure 5.11: N_0 immediate neighbors perform group key establishment then distribut
the network key8
Figure 5.12: The Set of Data that Each Node Should Store
Figure 5.13: A Case Study of Node Joining Process; node N_{13} join the network9
Figure 5.14: Example of non-leader node leave, node N_{12} leave the network9
Figure 5.15: Example of leader node leave, node N_4 leave the network
Figure 5.16: Example of leader node termination, node N_4 is terminated
Figure 6.1: The source sends a $MREQ$ message to the destination which reply with
MREP message
Figure 6.2: L4 and L1 are leader nodes and belong to the same group (group 1)11
Figure 6.3: The destination node L8 neither belongs to group 4 nor group 111
Figure 6.4: The source and destination nodes belong to groups that L1 leads and
belongs to

<u>Figures</u> vii

Figure 6.5: The destination nodes does not belong to groups that L1 leads and belongs
to117
Figure 6.6: Node L1 receives a forwarded CREQ message from a member of a group
it leads (group 1)118
Figure 6.7: Node L4 receive a forwarded CREQ message from its group leader L1 119
Figure 6.8: <i>CREQ</i> path
Figure 6.9: CREP path 122
Figure 6.10: Nodes <i>A</i> wants to get node B's certificate
Figure 6.11: N_i and h_1 belong to the same group
Figure 6.12: N_i belongs to a group leaded by h_1
Figure 6.13: N_j and h_n belong to the same group
Figure 6.14: N_j belongs to a group leaded by h_n
Figure 6.15: A case study that illustrates TAP
Figure 6.16: Classification based on node role
Figure 6.17: Classification based on type of credentials
Figure 6.18: Classification based on establishment of credentials
Figure 7.1: Rlationship between <i>N</i> and the average number of leader nodes177
Figure 7.2: Relationship between N and the average number of nodes leaded by each
leader 178
Figure 7.3: Relationship between N and the ratio of the number of leader nodes to N
Figure 7.4: Relationship between N and the ratio of the number of nodes leaded by
each leader to N
Figure 7.5: The average number of nodes leaded by each leader form on side and N
and the average number of leader nodes form the other side

<u>Symbols</u> viii

LIST OF SYMBOLS

·	
N_{i}	The unique ID of node <i>i</i>
$G_i^{N_{x}}$	The unique ID of group i led by node N_x
$\left G_{i}^{N_{x}}\right $	Group Size of group i led by node N_x
$K_{G_i}^{N_x}$	Group key of group i led by node N_x
R	Network leader
K^{R}	Network global key
KU_R	Network leader's public key
KM_{N_i}	Node N_i 's master key
KU_{N_i}	Node N_i 's public key based on elliptic curve Diffie-Hellman
KR_{N_i}	Node N_i 's private key based on elliptic curve Diffie-Hellman
KT_{N_i}	Node N_i 's termination key. This key is used by node $N_j \in G_k^{N_i}$ when its leader N_i is terminated to find the leader of the group that N_i belongs to
K_{L,N_i}	This is a peer-to-peer shared key between node N_i and its group leader L . This key is used to authenticate node N_i to L .
WG	The witness group, a group of nodes that witness that <i>R</i> is the network leader
T_{N_i}	Total number of nodes leaded by node N_i , equal zero if N_i does not lead any node i.e. non-leader node.
g_{i}	The undirected graph that represents node i and its immediate neighbors. Vertices of g_i represent N_i and its immediate neighbors, and an edge between two nodes exist only if the two nodes are within the transmission range of each other.
$oldsymbol{J}_i$	The adjacency matrix of g_i .
Q_{i}	The set of all cliques in g_i . $Q_i = \{q_1^i, q_2^i,, q_m^i\}$
$\left q_{j}^{i}\right $	The size of clique q_j^i of the graph g_i .
$q_{ ext{max}}^{i}$	The maximum clique of the graph g_i , $q_{\max}^i \in Q_i$
$q_{ m max}$	The clique with the maximum size among q_{\max}^i , $i = 1,,n$ where n is the number of graphs in the network, i.e.
$E_{K}(M)$	Encryption of message M using key K

<u>Symbols</u> ix

$D_K(M)$	Decryption of message M encrypted by key K
$Sign_{K}(M)$	Signature of message <i>M</i> using the key <i>K</i>
$Ver_{K}(M)$	Verification of message M signed by key K
\mathbb{Z}_p	The set of prime integer
$\Big((\bullet)\Big)$	Local broadcast or Group broadcast
(6)	Global Broadcast
	Connect two nodes within the transmission range of each other and trust each other
	Communication between two nodes out of the transmission range of each other
	Connect two nodes that trust each other and not necessary within the transmission range of each other.
	Connect two nodes within the transmission range of each other but do not trust each other
	Key establishment using the proposed key exchange algorithm

Abbreviations x

LIST OF ABBREVIATIONS

ECBD Elliptic Curve Burmester and Desmedt protocol **MRKT** Mixed-Radix Key Transport protocol **GNY** Gong, Needham and Yahalom logic **KDC Key Distribution Center** CA Certificate Authority **PGP** Pretty Good Privacy TTL Time to Live **NLR** Node Leave Request NKU Network Key Update **KEF Key Establishment Function KDF Key Derivation Function** LRR Leader Replacement Reply **CREP** Certificate Reply **CREQ** Certificate Request NJR Node Join Request WG Witness Group **RCR Root Confirmation Request** KEP **Key Establishment Permission NLEP** Network Leader Election Protocol **NLCP** Network Leader Confirmation Protocol NKEP Network Key Establishment Protocol **GKEP** Group Key Establishment Protocol RNM Root Nomination Message **RCM** Root Confirmation Message **MITM** Man in the middle attack NRR Node Replacement Request LRR Leader Replacement Reply RTM Network Leader Termination Message **MREQ** Communication Request **MREP** Communication Reply KREO **Key Request KREP** Key Reply **AREQ Authentication Request AREP** Authentication Reply

Abstract

ABSTRACT

A mobile ad-hoc network (MANET) is a kind of wireless ad-hoc networks, which is a self-configuring network of mobile nodes connected by wireless links the union of which forms an arbitrary topology. These nodes have limited power, computation, and communication capabilities; therefore the use of vastly resource consuming security mechanisms is not possible. Secure and efficient key management in MANETs has been a challenging task for the researchers due to the properties of MANETs like dynamic topologies, use of wireless media, no fixed infrastructure, low-energy constraint devices, limited storage and computation resources. In this thesis we propose a secure, efficient, and authenticated key management protocol for a group of communicating devices in MANETs.

Our proposed key management scheme is based on the concept that each group of nodes within the transmission range of each other can start a key establishment process. These groups can agree on a common key using a transitive authentication technique we developed. We also proposed an authentication protocol, Ad-hoc On Demand Authentication Chain Protocol (AOAC), which allow individual node to authenticate each other and to establish a shared key for peer-to-peer communication, the authentication does not rely on any centralize trusted authority or fixed server and is not based on public key cryptography. The proposed scheme supports dynamic membership operation and considers the dynamic behavior of the network topology. We also developed a key exchange algorithm which is used by our proposed key establishment protocol; it uses elliptic curve cryptography (ECC) and mixed radix conversion (MRC) to improve performance and save computation and communication cost. Our proposed key exchange algorithm is divided into two algorithms: a key agreement algorithm which is used by our proposed key establishment protocol during the setup phase, and a key transport algorithm which is used by our proposed protocol any time a re-keying is needed e.g. node leave or node join. The proposed scheme support dynamic network operations like join and leave operations.

Our key management scheme can be implemented in any network topology as long as the network is connected, only in the setup phase i.e. there is at least one communication link exists to all parties.

Chapter 1

1. Introduction

Ad-hoc is adj. Latin shorthand meaning "for this purpose only" [1]. Thus, an ad hoc committee is formed for a specific purpose, usually appointed to solve a particular problem. A mobile ad-hoc network (MANETs) is a self-configuring network of mobile routers (and associated hosts) connected by wireless links—the union of which form an arbitrary topology. The routers are free to move randomly and organize themselves arbitrarily; thus, the network's wireless topology may change rapidly and unpredictably. Such a network may operate in a standalone fashion, or may be connected to the larger Internet. Minimal configuration and quick deployment make ad-hoc networks suitable for emergency situations like natural or human-induced disasters, military conflicts, emergency medical situations, etc.

The communication security in ad-hoc networks is commonly based on cryptographic techniques which are based on a shared secret key known by the group of nodes that forms the network. The procedure for creating such a common secret for a group of communicating entities is called group key management. For example, when a group of people are in a closed meeting, they may want to form a private wireless network with their laptops in an ad-hoc manner. There may be no secure channel to connect the computers, and the participants may not have any common means to identify and authenticate each other digitally. This means that they originally do not share any secret keys nor have mutually verifiable public key certificate chains or access to a trusted key distribution center. An eavesdropper might listen to and interfere with their communication, even masquerade as one of them. They would need a group key management protocol, but the nature of ad-hoc networks sets certain special requirements for such a protocol. Another example is a mobile military network, which is both security sensitive and easily exposed to security attacks. Not only the information passing in the network is confidential but the wireless traffic itself can reveal the location of a target to the enemy. The nodes, roaming in hostile environment with little physical protection, might be compromised, which increases the possibility of insider attacks.

From the above examples we can consider ad-hoc networks as dynamic, peer-to-peer networks that do not have a pre-existing infrastructure. They are constructed on the spot. The parties involved might not have a common history. They are often