Misoprostol before Elective Caesarean Section for Decreasing the Neonatal Respiratory Morbidity A Randomized Control Trial

Thesis

Submitted for partial fulfillment of Master degree in Obstetrics and Gynecology

By Soad Ismail El-Sorady

M.B.B.Ch. (2011) Alexandria University Resident in Gamal Abdel Nasser Hospital

Under Supervision of

Prof. Hassan Tawfik Khairy

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Prof. Sherif Fathi El-Mekkawi

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El-kotb

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo, Egypt
2017

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Hassan Tawfik Khairy**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his generous supervision, continuous help and encouragement throughout this work. Also for the tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Sherif Fathi El-Mekkawi**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of **Dr. Ahmed Mohamed El-Koth**, Lecturer in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Also I would like to express my deep feelings and thanks to the staff of obstetrics, and Neonatal Intensive Care Units in Ain Shams Maternity Hospital for their help.

Last but not least, I dedicate this work to my family, without their sincere emotional support, pushing me forward, this work would not have ever been completed.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Protocol	viii
Introduction	1
Aim of the Work	5
Review of literature:	
Transient Tachypnea of The Newborn	6
Other Neonatal Respiratory Morbidities	25
Elective C.S and respiratory morbidity	57
Misoprostol and Catecholamine surge	73
Patients and Methods	84
Results	93
Discussion	101
Summary and Conclusion	107
Recommendations	110
References	111
Appendix	141

List of Abbreviations

Abbr.	Full-term
AA	Arachidonic Acid
ABCA 3	ATP Binding cassette gne
ABG	Arterial Blood Gases
AQP5	Aquaporin 5 water channel
ASUMH	Ain Shams University Maternity Hospital
ATP	Adenosine Triphosphate
BNP	Brain Natriuretic Peptide
BPD	Bronchopulmonary Dysplasia
CRF	Case Record Form
C.S	Caesarean Section
C.T	Computed Tomography
CDMR	Caesarean Delivery on Maternal Request
cGMP	Cyclic Guanosine Mono Phosphate
CI	Confidence Interval
CNS	Central Nervous System
CONSORT	Consolidated Standards of Reporting Trials
COX	Cyclooxygenase
C-PAP	Continuous Positive Airway Pressure
ECD	Elective Caesarean Delivery
ECMO	Extra Corporial Membrane Oxygenation
EDA	Epidural Anaesthesia
ENaC	Epithelial Na Channels

eNO Endothelial Nitric Oxide

EP E Prostanoid receptor

ET Endothelin

GA General Anaesthesia

HFOV High Frequency Oscillatory Ventillation

HMD Hyaline Membrane Disease

IM Intra muscular

iNO Inhaled Nitric Oxide

IP3 Inositol Triphosphate

IV Intra venous

IVH Intra Ventricular Haemorrhage

LDA Lactate Dehydrogenase

MRI Magnetic Resonance ImagingmRNA Messanger Ribonucleic Acid

NEC Necrotizing Enterocolitis

NG Nasogastric

NICHD National Institute Of Child Health and Human

Development

NICU Neonatal Intensive Care Unit

N-SAIDS Non Steroidal Anti Inflamatory Drugs

NTproBNP Plasma N terminal pro-B-type Natriuretic

Peptide.

PaCO₂ Partial Pressure of Carbon Dioxide in Arterial

Gas

PaO₂ Partial Pressure of Oxygen in Arterial Gas

PDA Patent Ductus Arteriosis

PGI2 Prostaglandin I2 (Prostacyclin)

PLA Phospholipase A

PMT Pulmonary Mechanics Testing

PPHN Persistant Pulmonary Hypertension

PVR Pulmonary Vascular Resistance

RCT Randomized Controlled Trial

RD Respiratory Distress

RDS Respiratory Distress Syndrome

ROP Retinopathy of Prematurity

RR Risk Ratio

RR Respiratory Rate

SR Sarcoplasmic Reticulum

SVR Systemic Vascular Resistance

Tmax Time of maximum plasma concentration

TTN Transient Tachypnea of The Newborn

TXA2 Thromboxane A2

US Ultrasound

UK United Kingdom

VLBW Very Low Birth Weight

SD Standard Deviation

SPSS Statistical Package for Social Science

List of Tables

Cable N	o. Title F	Page No.
Table (1):	Complications of elective cesarean section	63
Table (2):	Signal transduction of Prostanoid Receptor	rs 79
Table (3):	Comparison between groups according to (years), pulse and blood pressure.	
Table (4):	Comparison between groups regarding demographic data.	
Table (5):	Comparison between groups according to gestational age (weeks).	
Table (6):	Timing of PG administration.	97
Table (7):	Comparison between groups according respiratory morbidity.	
Table (8):	Comparison between groups according to of respiratory morbidity (pneumonia, RDS TTN).	S and
Table (9):	Comparison between groups according NICU admission.	g to

List of Figures

Figure No	. Title Page No.
Figure (1):	Normal lung pattern in U.S
Figure (2):	Pathology of TTN
Figure (3):	A supine anteroposterior chest radiograph of ar infant with TTN
Figure (4):	TTN lung pattern in U.S
Figure (5):	Fetal Pneumonia pattern in ultrasound 19
Figure (6):	Pathogenesis of respiratory distress syndrome. 29
Figure (7):	Pathology of RDS30
Figure (8):	Surfactant metabolism31
Figure (9):	Microscopic appearance of lung of an infant with RDS
Figure (10):	X-ray and U.S features of RDS37
Figure (11):	Transitional fetal circulation42
Figure (12):	ET and NO pathways in pulmonary arterial endothelial and smooth muscle cells
Figure (13):	Diagrammatic representation of a normal pulmonary artery in a term newborn infant 46
Figure (14):	Idiopathic PPHN shows hyperlucent lung fields due to profound hypoxemia
Figure (15):	Cesarean delivery rate (%)

List of Figures (Cont.)

Figure No.	Citle	Page No.
Figure (16):	Estimated perinatal deaths as elective C.S versus expectant depending upon the gestational ag	t management
Figure (17):	Consort 2010 flow diagram	93
Figure (18):	Comparison between group P a regards types of respiratory morb	•
Figure (19):	Comparison between group P according to NICU Admission	•

Misoprostol before Elective Caesarean Section for Decreasing the Neonatal Respiratory Morbidity A Randomized Control Trial

Protocol of Thesis

Submitted for partial fulfillment of Master Degree In *Obstetrics and Gynaecology*

By

Soad Ismail El-sorady

M.B.B.Ch. (2011) Alexandria University Resident in Gamal Abdel Nasser Hospital

Under Supervision of

Prof. Hassan Tawfik Khairy

Professor of Obstetrics and Gynaecology Faculty of Medicine - Ain-Shams University

Prof. Sherif Fathi El-Mekkawi

Professor of Obstetrics and Gynaecology Faculty of Medicine – Ain-Shams University

Dr. Ahmed Mohamed El-kotb

Lecturer of Obstetrics and Gynaecology Faculty of Medicine – Ain-Shams University

> Faculty of Medicine Ain Shams University 2016

Introduction

Neonatal respiratory distress may occur in either term or preterm newborns with a higher relative risk in preterm, and whether born vaginally or through caesarean section, but in a higher percentage after elective caesarean section whose rate is rising either due to maternal request (*Minkoff,et al., 2003*), obesity (*Poobalan,et al., 2009*), and older maternal age (*Callaway,et al., 2005*) than after normal vaginal delivery (**Zanardo, et al., 2004**) or emergency caesarean section (*Hansen et al., 2007*).

It is responsible for 30% of neonatal deaths (*Harrison*, *et al.*, 2008). It has several subdivisions:

One is the respiratory distress syndrome (RDS) which is called hyaline membrane disease, it can occur in about 1% of pregnancies as a result of a pathology in lung surfactant either qualitative or quantitative (*Whitsett et al.*, 2005), and usually in preterm neonates (*Bland,et al.*, 2008).

Another is transient tachypnea of the newborn (TTN) in which there is respiratory distress and increased respiratory rate due to delayed resorption of pulmonary fluid, as a result of defective catecholamine surge (*Faxelius, et al., 1983*), its incidence is 5.7/1000 deliveries (95% CI;1.7-2.7) (*Morrison JJ, et al., 1995*).

And also includes persistent pulmonary hypertension in which the foetal pulmonary vascular resistance remains high and the pulmonary blood flow still low after delivery (*Whitsett,et al., 2005*).

Catecholamines can stimulate pulmonary fluid reabsorption through acting upon beta-adrenergic receptors in foetal lung which present more late in gestation (*Bland,et al., 2008*), and thus enable the secretion of surfactant (*Whitsett,et al., 2005*).

This surge of catecholamines can be provoked through prostaglandins given before caesarean section to pregnant females (*Singh,et al., 2004*) as those who are born vaginally are found to be adapted metabolically through a higher catecholamine level at birth (*Hagnevik,et al., 1984*).

So, prostaglandins may be given about one hour before an elective caesarean section after excluding the presence of contraindication to their use to decrease the neonatal respiratory diseases and thus, the number of children who suffered from bronchopulmonary dysplasia that occurs frequently in children who had previously TTN will diminish (*Whitsett, et al., 2005*).

The prostaglandins in common use are misoprostol (prostaglandin E_1) and dinoprostone (prostaglandin E_2). Prostaglandin E_1 (Misoprostol) is available as a cervical ripening agent in the form of 100 or 200 mcg tablets which

can be taken orally, vaginally, or sublingually, their Tmax is 12 +/- 3 minutes with terminal half life ranging from 20 to 40 minutes (*Wood,et al., 2001*).

Prostaglandins E_2 which are available as oral tablets, pessaries, or vaginal gels are uteroselective agents (*O'Brien,et al., 1995*) widely used for induction of labour, start action within 10 minutes and become in full action after about 12 hours (*Rayburn,et al., 1989*).

In a previous prospective study of 36 women scheduled for an elective caesarean section beyond 38weeks (*Motaze NV*, *et al.*, *2013*), 18 women received intravaginal prostaglanadin E₂ gel and 18 received placebo, there was one neonatal respiratory distress case in the control group which was reported as transient tachypnea of the newborn (risk ratio (RR) 0.33, 95% confidence interval (CI) 0.01 to 7.68) with similar Apgar score at one and five minutes and no need to mechanical ventilation nor side effects related to treatment in either group, so no difference in respiratory outcome reported although there was a significantly higher catecholamine level in the intervention group.

The aim in our work is to evaluate the effect of misoprostol (Prostaglandin E_1) when given to women undergoing caesarean section on decreasing the incidence of the neonatal respiratory morbidity.

Aim of the work

The aim of this study is to assess the efficacy of Prostaglandin E_1 on the reduction of the neonatal respiratory morbidity in women scheduled for caesarean section.

Research Question

In pregnant women planned for elective caesarean section, does Misoprostol (prostaglandin E_1) reduce the neonatal respiratory morbidity?

Research Hypothesis

In pregnant women planned for elective caesarean section, Misoprostol (prostaglandin E_1) may improve the neonatal respiratory morbidity.

Methods, Participants, Intervention, and Outcomes

-Study Setting:

This study will be conducted in Ain Shams University Maternity Hospital (ASUMH), starting from November 2016.

-Trial Design:

Parallel, randomized placebo controlled trial, comparing the use of Misoprostol (Prostaglandin E_1) vaginally in the form of Cytotec 200mcg tablets with non medicated similar vaginal tablet (placebo) to decrease the neonatal respiratory morbidity.

-Eligibility Criteria:

• Inclusion criteria

- 1) Age: 18 years or more.
- 2) Term singleton pregnancy (38 38⁺⁶ weeks gestation).
- 3) Planned for elective transverse lower segment caesarean section with an indication.
- 4) Written informed consent signed by the participating women.