

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering Department

Implementation and Optimization of Video Coding Techniques

Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Electrical Engineering

Submitted by:

ENG. WASEIM HASHEM MOHAMED MAHJOUB

B.Sc. of Electrical Engineering (Computer and Systems Engineering) Ain Shams University, 2004

Supervised by:

PROF. DR. GAMAL ALY
DR. HOSSAM OSMAN

English Approval sheet

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Software Engineering Competence Center (SECC), Information Technology Industry Development Agency (ITIDA), Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Date: 5th September, 2011

Name: Waseim Hashem Mohamed Mahjoub

C.V

Name of Researcher	Waseim Hashem Mohamed Mahjoub
Date of Birth	2 nd November, 1981
Place of Birth	Saudi Arabia
University Degree	B.Sc. of Electrical Engineering (Computer and Systems Engineering)
Name of University	Ain Shams University, Faculty of Engineering
Date of Degree	July, 2004
Current Position	Senior R&D Engineer - Software Engineering Competence Center

ABSTRACT

With the multimedia revolution in full swing and with the continuously-emerging multimedia codecs and formats, portable multimedia players have become one of the most popular electronic devices. Some players support a single codec and receive its input in a single way like DVD players. Designing a portable multimedia player that supports several codecs encloses many design issues and challenges. The main challenge is optimizing the decoding process for enhancing the player performance, especially for the latest coding standard H.264.

Many approaches for the implementation and optimization of H.264 Baseline profile decoder have been developed in previous researches. In addition, several enhancement and speedup techniques for improving the H.264 deblocking filter performance have been developed in the literature.

In this research, a new parallelization approach for video player on an embedded asymmetric dual-core architecture with the two cores having significantly different performances was proposed, the player supports H.264 Baseline profile and Xvid video files. In addition, several enhancement and optimization techniques were presented at the system level and code level. It was proven through a performance comparison using many test samples that the implemented video player with the proposed parallelization approach and optimization techniques has a significant performance improvement versus previous implementations in the literature survey.

H.264 deblocking filter is one of the most powerful tools in H.264 decoding software that is used to improve the visual quality of decoded frames by removing the blocking artifacts; however it increases the computational complexity of the H.264. Two categories of enhancement and speedup techniques were proposed: standard-compliant techniques improving the deblocking performance by reducing the computation complexity, and standard-noncompliant techniques which propose some modifications on the original deblocking filter algorithm for further improvement of

the performance with tiny quality degradation. The proposed enhancement techniques showed significant performance improvement with tiny quality degradation, especially for videos encoded in low-bit rates.

Keywords: embedded system, video player, video coding, H.264, Xvid, dual-core architecture, parallelization, Deblocking filter, Optimization, Performance improvement

ACKNOWLEDGMENTS

First, I want to express my gratitude to Allah whose blessings made my efforts fruitful. Secondly, throughout the years many people have directly and indirectly helped me achieve this goal. I would like to thank them all, but there are some people who need special recognition.

First of all, I would like to thank my supervisors **Prof. Dr. Gamal M. Aly**, and **Dr. Hossam Osman** for their guidance and help. I am extremely grateful to Prof. Dr. Gamal M. Aly for his continuous support, encouragement and patience. His experience helped me a lot during the research. I would like to express my gratitude to Dr. Hossam Osman for being an outstanding advisor and excellent professor. His constant encouragement, support, and invaluable suggestions made this work successful. He has been everything that one could want in an advisor.

Second, I would like to thank my wife, Eng. Zeinab Ali Eldeihy, for her support and encouragement during years of my work. Her eagerness to get the best out of me is really what made me reach in here.

In addition, a big thank you goes to many friends who supported me at various stages of this work. Special thanks must be addressed to Eng. Mahmoud Abdallah and Eng. Mohamed AbdElwahed, who helped me a lot in getting many of the resources and developing the target system during the research.

Finally, I would like to thank my thesis examination committee for giving me the honor of being my examiners.

TABLE OF CONTENTS

LIS	T OF ABBREVIATIONSX
LIS	T OF FIGURESXII
LIS	T OF TABLESXIV
CH	APTER 1 - INTRODUCTION1
1.1	Overview
1.2	General Research Objective
1.3	Specific Research Objectives
1.4	Research Contributions
1.3.1	H.264 video player parallelization and optimization for embedded asymmetric Dual-Core architecture
1.3.2	2 H.264 Deblocking Filter Enhancement4
1.5	Thesis Organization4
CH	APTER 2 - RELEVANT BACKGROUND6
2.1	Video Coding Standards
2.2	H.264 Codec Standard Overview
2.3	H.264 Baseline Profile Synopsis
2.4	H.264 Deblocking Filter Operation
2.5	Implementation Approaches of H.264 Baseline Decoder
2.5. 1	Hardware Implementation of H.264 Baseline Decoder21
2.5.2	2 Optimized Software of H.264 Baseline Decoder Utilizing One-Core Architecture 25
2.5.3	3 Optimized Software of H.264 Baseline Decoder Utilizing Multi-Core Architecture 33

2.6	H.264 Deblocking Filter Speedup	. 48
2.7	Conclusion	. 56
PAl	APTER 3 - CONTRIBUTION I: H.264 VIDEO PLAYER RALLELIZATION AND OPTIMIZATION FOR EMBEDDED YMMETRIC DUAL-CORE ARCHITECTURE	5 9
3.1	System Architecture of the Video Player	61
3.2	Video Player Parallelization Approach	. 66
3.3	Software Optimization techniques	. 72
3.4	Experimental Results	. 79
3.5	Conclusion	81
	APTER 4 - CONTRIBUTION II: H.264 DEBLOCKING FILTER HANCEMENT	82
4.1	Implementation of Previous Enhancement Techniques for the Deblocking Filter	. 84
4.2	Proposed Enhancement techniques for the Deblocking Filter	. 85
4.2. 1	1 Standard-Compliant Enhancement Techniques	. 85
4.2.2	2 Standard-Noncompliant Enhancement Techniques	91
4.3	Experimental Results	. 94
4.4	Conclusion	101
	APTER 5 - CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE SEARCH1	02
5.1	Conclusions.	102
5.1.1	1 H.264 Video Player Parallelization and Optimization for Embedded Asymmetric Dual-Core Architecture	103
5.1.2	2 H.264 Deblocking Filter Enhancement	104
5.2	Recommendations for Future Research	105
REF	FERENCES1	06

LIST OF ABBREVIATIONS

2 CDD	2 d Consulta Dada all'a Data
3GPP	3rd Generation Partnership Project
ARM	Advanced RISC Machine
ASIC	Application-Specific Integrated Circuit
AVC	Advanced Video Coding
BIOS	Basic Input/Output System
BS	Boundary Strength
CAVLC	Context-Adaptive Variable Length Coding
CE	Codec Engine
CIF	Common Intermediate Format (352 × 288 resolution)
CMEM	Codec Memory
CODEC	enCOder / DECoder pair
DEM	Data Exchange Mechanism
DMA	Direct Memory Access
DSP	Digital Signal Processor
DVB-H	Digital Video Broadcasting-Handheld
DVD	Digital Versatile Disc
FFmpeg	Fast Forward MPEG
GPL	General Public License
IDCT	Inverse Discrete Cosine Transform
IEC	International Electrotechnical Commission
IMS	IP Multimedia Subsystem
IQ	Inverse Quantization
I-slice	Intra Slice
ISO	International Organization for Standardization
ITU-T	International Telecommunication Union Telecommunication Sector
LGPL	Lesser/Library General Public License
JVT	Joint Video Team
LF	Loop Filter
LOP	Line Of Pixels
MB	MacroBlock
MC	Motion Compensation
MMS	Multimedia Messaging Service
MMU	memory management unit
MPE	Media Processing Engine
MPEG	Moving Picture Experts Group
MV	Motion Vector
NAL	Network Abstraction Layer
PAL	Phase Alternating Line

PE	Processing Element
PPE	Power Processor Element
P-slice	Predicted Slice
PSNR	Peak Signal to Noise Ratio
PSTN	Public Switched Telephone Network
QCIF	Quarter CIF (176 × 144 resolution)
QP	Quantizer Parameter
QVGA	Quarter Video Graphics Array (320 × 240 resolution)
RGB	Red-Green-Blue
RISC	Reduced Instruction Set Computer
SIMD	Single Instruction Multiple Data
SoC	System-on-Chip
SPE	Synergistic Processor Elements
SPI	Server Programming Interface
TCP/IP	Transmission Control Protocol / Internet Protocol
USB	Universal Serial Bus
VCEG	Visual Coding Experts Group
VCL	Video Coding Layer
VGA	Video Graphics Array
VLC	VideoLAN Client media player
VLD	Variable Length Decoder
VLIW	Very Long Instruction Word
VPSS	Video Processing Subsystem
xDM	eXpress Digital Media
YUV	Luminance/Chrominance color space
3GPP	3rd Generation Partnership Project
ARM	Advanced RISC Machine
ASIC	Application-Specific Integrated Circuit
AVC	Advanced Video Coding
BIOS	Basic Input/Output System
BS	Boundary Strength
CAVLC	Context-Adaptive Variable Length Coding
CE	Codec Engine
CIF	Common Intermediate Format (352 × 288 resolution)
CMEM	Codec Memory
CODEC	enCOder / DECoder pair
DEM	Data Exchange Mechanism
DMA	Direct Memory Access
DSP	Digital Signal Processor
DVB-H	Digital Video Broadcasting-Handheld
DVD	Digital Versatile Disc
FFmpeg	Fast Forward MPEG
GPL	General Public License

LIST OF FIGURES

Figure 2-1: ITU-T and MPEG multimedia standards	7
Figure 2-2: Picture quality versus bitrate for H.264, MPEG-4, and JPEG	
Figure 2-3: H.264 encoder dataflow	
Figure 2-4: H.264 decoder dataflow	11
Figure 2-5: H.264 profiles relationships	12
Figure 2-6: H.264 decoding filter order	15
Figure 2-7: BS derivation process	17
Figure 2-8: Line of pixels across an edge	18
Figure 2-9: Hardware-Software co-design of H.264 baseline profile decoder	22
Figure 2-10: Influence of instruction and data cache sizes on the H.264 decoding	23
Figure 2-11: H.264 decoding companion chip with specialized coprocessors for mo	bile
applications	
Figure 2-12: Parallelization of data movement with the decoding operations	26
Figure 2-13: H.264 decoder flowchart with multithreading technology	27
Figure 2-14: Skipping of all-zero residual blocks mechanism	28
Figure 2-15: Modifying H.264 decoding flow to reduce memory access	29
Figure 2-16: Reducing boundary checking	30
Figure 2-17: Summary of the improvements achieved by joint algorithm/code-leve	1
optimization scheme and memory access minimization on general processor A	
	31
Figure 2-18: Dependence among macroblocks	34
Figure 2-19: Wave approach for exploiting macroblock parallelism	35
Figure 2-20: 3D-Wave strategy utilizing the limited spatial range of inter frame	
dependencies	36
Figure 2-21: H.264 decoder architecture using preparsing and dynamic scheduling a	
macroblock level	
Figure 2-22: H.264 decoding speedup comparison of different scheduling techniqu	
using preparsing and dynamic scheduling at macroblock level	
Figure 2-23: The thread parallelization and scheduler design of multi-core paralleliz	
of H.264 decoding	
Figure 2-24: Using spatial and temporal dependencies for multi-core parallelization	
H.264 decoding	
Figure 2-25: Computation profile results for H.264 decoder using one PPE	
Figure 2-26: Pipeline structures of H.264 parallel decoder using motion compensat	
queue partitioning for dynamic load balancing	43

Figure 2-27: Partitioning and assignment of one frame process using fixed coarse-gr	rained
function level parallelization of H.264	44
Figure 2-28: Performance with preloading a percentage of a single frame to L2 cach	e45
Figure 2-29: Software memory throttling for solving memory access contention	46
Figure 2-30: BS derivation order of H.264 deblocking filter	49
Figure 2-31: Huffman tree for I and P slice boundary strength derivation	52
Figure 2-32: Simplified deblocking filter by computing the maximum and minimum	Į.
values among the six pixels across an edge	53
Figure 2-33: Flowchart for Nbs derviation for deblocking filter	54
Figure 2-34: Deblocking filter based on motion vectors	55
Figure 3-1: DM6446 digital media evaluation module	61
Figure 3-2: TMS320DM6446 SoC architecture	62
Figure 3-3: VLC threads and data flow	64
Figure 3-4: Profiling results of VLC threads	66
Figure 3-5: System architecture of the parallelized video player	68
Figure 3-6: Parallel operation of video player	69
Figure 3-7: Codec Engine framework usage flow	70
Figure 3-8: C64x+ DSP cache memory architecture	74
Figure 3-9: Replacing branching instructions by pointers to functions	74
Figure 3-10: Memory size retrieval operation of the memory allocation and re-allocation	ation
algorithms	77
Figure 3-11: Memory allocation and re-allocation algorithms	78
Figure 4-1: Profiling results of H.264 Baseline profile decoder	82
Figure 4-2: BS derivation process	86
Figure 4-3: Proposed BS derivation procedure	87
Figure 4-4: Proposed BS derivation procedure with frame boundary check	88
Figure 4-5: Skipping BS derivation based on macroblock size	89
Figure 4-6: LOP across every edge in the macroblock	92
Figure 4-7: Proposed true edge detection procedure	93
Figure 4-8: Δ PSNR between the deblocking filter with proposed standard-noncomp	liant
enhancement techniques and the standard H.264 deblocking filter	99

LIST OF TABLES

Table 2-1: H.264 decoding functions properties used for fixed coarse-grained function	
level parallelization4	4
Table 2-2: BS value distribution for QCIF Sequences5	2
Table 3-1: Priorities of VLC threads6	5
Table 3-2: Intrinsic DSP Functions of TMS320C64x+7	5
Table 3-3: Samples specifications of Xvid and H.264 files	9
Table 3-4: Xvid decoding results after parallelization8	0
Table 3-5: H.264 Baseline profile decoding results after parallelization8	0
Table 3-6: H.264 Baseline profile decoding results after optimization8	0
Table 3-7: H.264 decoding performance versus other implementations8	0
Table 4-1: BS truth table for BS derivation process8	6
Table 4-2: Samples Specifications files for evaluating H.264 deblocking filter	
enhancement9	4
Table 4-3: Performance improvement of the previous enhancement techniques on	
DM64469	6
Table 4-4: Performance improvement of the previous enhancement techniques on PC.9	
Table 4-5: Performance improvement of the previous and proposed standard-compliant enhancement techniques on DM64469	
Table 4-6: Performance improvement of the previous and proposed standard-compliant enhancement techniques on PC9	
Table 4-7: Performance improvement of the previous, proposed standard-compliant and standard-noncompliant enhancement techniques on DM64469	
Table 4-8: Performance improvement of the previous, proposed standard-compliant and standard-noncompliant enhancement techniques on PC	
Table 4-9: H.264 Baseline profile decoding results after deblocking filter enhancement	
	0

Chapter 1

INTRODUCTION

1.1 **OVERVIEW**

Embedded multimedia applications became vital for almost all aspects of modern life. Designing an embedded video player requires the optimizing the decoding process for enhancing the player performance, especially for the latest coding standard H.264. Many approaches for the implementation and optimization of H.264 Baseline profile decoder have been developed in previous researches. In addition, several enhancement and speedup techniques for improving the H.264 deblocking filter performance have been developed in the literature.

In this thesis, we propose a video player parallelization and optimization approach for embedded asymmetric dual-core architecture along with implementation which proved to have significant performance improvement versus previous implementations.

For H.264 deblocking filter several enhancement techniques were proposed, which proved to achieve performance improvement with little quality degradation whilst subjective quality was maintained.

1.2 GENERAL RESEARCH OBJECTIVE

With the multimedia revolution in full swing and with the continuously-emerging multimedia codecs and formats, portable multimedia players have become one of the most popular electronic devices. Designing a portable multimedia player that supports several codecs and receives its input from different sources like a USB flash or real-