

### Ain Shams University Faculty of Science Chemistry Department



# Preparation of mixed oxides nanotube arrays and its applications

#### A Thesis

Submitted to Chemistry Department – Faculty of Science – Ain Shams University in Partial Fulfillment for Requirements of the Master Degree of Science (M.Sc.) in Chemistry

# By Fouad Ahmed Fouad Mohamed

B.Sc. in Chemistry, Faculty of Science Ain Shams University 2011

### **Under Supervision of**

### Dr. Maged Shafik Antonious

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

#### Dr. Nahla Ismail Abd El Salam

Assistant Professor of Physical Chemistry, National Research Center, Dokki, Giza, Egypt



### Ain Shams University Faculty of Science Chemistry Department



# Preparation of mixed oxides nanotube arrays and its applications

By

### **Fouad Ahmed Fouad Mohamed**

B.Sc. in Chemistry, Faculty of Science Ain Shams University 2011

| Thesis supervisors                                                                                  | <u>Signiture</u> |
|-----------------------------------------------------------------------------------------------------|------------------|
| Dr. Maged Shafik Antonious Professor of Physical Chemistry, Faculty of Science Air Shame University |                  |
| Faculty of Science, Ain Shams University.                                                           |                  |
| Dr. Nahla Ismail Abd El Salam                                                                       |                  |
| Professor of Physical Chemistry,                                                                    |                  |
| National Research Center                                                                            |                  |

**Head of Chemistry Department** 

Prof.Dr. Ibrahim.H.A.Badr



### Ain Shams University Faculty of Science Chemistry Department



**Student Name: Fouad Ahmed Fouad Mohamed** 

Scientific Degree: M.Sc.

**Faculty Name: Faculty of Science – Ain Shams University** 

**Graduation Year: 2011** 

**Granting Year:** 

**Head of Chemistry Department** 

Prof.Dr. Ibrahim.H.A.Badr

### **ACKNOWLEDGEMENT**

I would first like to thank my thesis advisor Prof.Dr/Maged Shafik Professor of Physical Chemistry Faculty of Science at Ain Shams University and Dr/Nahla Ismail Professor of Physical Chemistry at National Research Center.

I would also like to thank Science and Technology Development Fund (STDF) in Egypt as part of project number 3649 for the financially support for this work.

Author

Fouad Ahmed

## **Content**

|                                                                                               | Page |
|-----------------------------------------------------------------------------------------------|------|
| List of Abbreviations                                                                         | I    |
| Summary                                                                                       | II   |
| Aim of Work                                                                                   | VI   |
| 1. Introduction                                                                               |      |
| 1.1.Energy.                                                                                   | 1    |
| 1.2.Photocatalysis.                                                                           | 3    |
| 1.3. Semiconductor Properties.                                                                | 5    |
| 1.4. Doping of Semiconductors.                                                                | 6    |
| 1.5. Titanium Dioxide (TiO <sub>2</sub> ).                                                    | 8    |
| 1.6. Titanium Dioxide Forms.                                                                  | 10   |
| 1.7. Titanium Dioxide Applications.                                                           | 12   |
| 1.8. The Development of the Anodization Method for                                            | 16   |
| Fabrication of TiO₂ Nanotubes.                                                                |      |
| 1.8.1. The First Generation of TiO <sub>2</sub> Nanotubes (using Aqueous Electrolytes).       | 17   |
| <b>1.8.2.</b> The Second Generation of TiO <sub>2</sub> Nanotubes (using Buffered Solutions). | 17   |

| 1.8.3. The Third Generation of TiO <sub>2</sub> Nanotubes (using Polar Organic  |    |
|---------------------------------------------------------------------------------|----|
| Compounds).                                                                     |    |
| 1.8.3.1. Anodization using Ethylene Glycol as a Solvent.                        | 19 |
| 1.8.3.2. Anodization using Glycerol as a Solvent.                               | 20 |
| 1.8.4. The Fourth Generation of TiO <sub>2</sub> Nanotubes (using Non-Fluoride, | 21 |
| Acid Based Electrolytes).                                                       |    |
| 1.9. Key Parameters for Controlling the Growth of the                           | 21 |
| Nanotubes.                                                                      |    |
| 1.10. Effect of Doping and Coating on Physical Properties                       | 24 |
| of TiO₂ Nanotubes.                                                              |    |
| 1.11. The Mechanism of Hydrogen Production by a                                 | 25 |
| Photoelectrochemical Cell (PEC).                                                |    |
| 1.12. Iron-Modified TiO <sub>2</sub> Nanotube Arrays.                           | 28 |
| 1.13. Molybdenum-Modified TiO <sub>2</sub> Nanotube Arrays.                     | 29 |
| 2. Experimental Section                                                         |    |
| 2.1. Materials.                                                                 | 31 |
| 2.2. Equipment.                                                                 | 32 |
| 2.3. Pre-treatments.                                                            | 33 |
| 2.4. Theoretical Principles                                                     |    |
| 2.4.1. Field Emission Scanning Electron Microscope (FE-SEM).                    | 33 |

| 2.4.2. Energy Dispersive X-ray Fluorescence.                                 | 36 |
|------------------------------------------------------------------------------|----|
| 2.4.3. Principles of X-ray Diffraction.                                      | 39 |
| 2.4.4. UV-Vis Diffuse Reflectance Spectroscopy.                              | 41 |
| 2.4.5. Photocatalytic Activity.                                              | 42 |
| 2.5. Methods.                                                                | 43 |
| 2.5.1. Preparation of TiO <sub>2</sub> Nanotube Arrays using Glycerol as a   | 43 |
| Solvent.                                                                     |    |
| 2.5.2. Electrodeposition of Iron on TiO <sub>2</sub> Nanotube Arrays (TNTs)  | 46 |
| using TNTs Prepared by Glycerol as a Solvent.                                |    |
| 2.5.3. Electrodeposition of Molybdenum Oxide on TiO <sub>2</sub>             | 47 |
| Nanotube Arrays using TNTs Prepared by Glycerol as a                         |    |
| Solvent.                                                                     |    |
| 2.5.4. Preparation of TiO <sub>2</sub> Nanotube Arrays using Ethylene Glycol | 48 |
| as a Solvent.                                                                |    |
| 2.5.5. Electrodeposition of Iron on TiO <sub>2</sub> Nanotube Arrays Using   | 49 |
| TNTs Prepared by Ethylene Glycol as a Solvent.                               |    |
| 2.5.6. Photocatalytic Activity using Solar Simulator.                        | 50 |
| 2.5.7. Hydrogen Production by Electrochemical Water Splitting.               | 51 |
| 3. Results and Discussion                                                    |    |
| 3.1. TiO <sub>2</sub> Nanotube Arrays using Glycerol as Solvent and          | 53 |
| Iron-Modified TiO₂ Nanotube Arrays.                                          |    |

| 3.1.1. Field E             | mission Scanning Electron Microscope          | 53 |
|----------------------------|-----------------------------------------------|----|
| Image:                     | s.                                            |    |
| 3.1.2. <i>Energy</i>       | Dispersive X-ray Fluorescence Analysis.       | 60 |
| 3.1.3. <i>X-ray L</i>      | Diffraction (XRD).                            | 62 |
| 3.1.4. Diffuse             | e Reflectance Spectroscopy (DRS).             | 63 |
| 3.1.5. <i>Photoe</i>       | electrocatalytic Activity Measurements.       | 64 |
| 3.1.6. <i>Hydrog</i>       | gen Gas Evolution from Water Splitting.       | 73 |
| 3.2. Molybdei              | num-Modified TiO <sub>2</sub> Nanotube Arrays | 76 |
| Prepared                   | by Glycerol as Solvent.                       |    |
| 3.2.1. Field E             | mission Scanning Electron Microscope          | 76 |
| Image:                     | s.                                            |    |
| 3.2.2. <i>Energy</i>       | Dispersive X-ray Fluorescence Analysis.       | 79 |
| 3.2.3. X-ray L             | Diffraction (XRD).                            | 80 |
| 3.2.4. Diffuse             | Reflectance Spectroscopy (DRS).               | 82 |
| 3.2.5. <i>Photoe</i>       | electrocatalytic Activity Measurements.       | 83 |
| 3.2.6. <i>Hydrog</i>       | gen Gas Evolution from Water Splitting.       | 88 |
| 3.3. TiO <sub>2</sub> Nand | otube Arrays using Ethylene Glycol as         | 90 |
| Solvent a                  | nd Iron-Modified TiO₂ Nanotube Arrays.        |    |

| 3.3.1.         | Field Emission Scanning Electron Microscope             | 91  |
|----------------|---------------------------------------------------------|-----|
|                | Images.                                                 |     |
| 3.3.1.1.       | FE-SEM Image for Concentration Series                   | 93  |
| 3.3.1.2.       | FE-SEM Image for Time Series                            | 96  |
| 3.3.2.         | Energy Dispersive X-ray Fluorescence Analysis.          | 98  |
| 3.3.3.         | X-ray Diffraction (XRD).                                | 99  |
| 3.3.4.         | Diffuse Reflectance Spectroscopy (DRS).                 | 101 |
| 3.3.5.         | Photoelectrocatalytic Activity Measurements.            | 103 |
| 3.3.5.1.       | For Concentration Series.                               | 103 |
| 3.3.5.2.       | For Time Series.                                        | 106 |
| 3.3.6.         | Hydrogen Gas Evolution from Water Splitting.            | 112 |
| 3.4. <i>Co</i> | omparison between Fe Modified TiO <sub>2</sub> Nanotube | 114 |
| A              | rray using Ethylene Glycol and using Glycerol as        |     |
| A              | nodization Bath.                                        |     |
|                | 4. References                                           | 117 |

## **List of Abbreviations**

| PEC    | Photoelectrochemical cells                  |
|--------|---------------------------------------------|
| Eg     | Band gap                                    |
| UV     | Ultraviolet                                 |
| DSSCs  | Dye-sensitized solar cells                  |
| TNTs   | TiO₂ nanotube arrays                        |
| FE-SEM | Field emission scanning electron microscope |
| XRD    | X-ray diffraction                           |
| EDX    | Energy dispersive X- ray spectroscopy       |
| DRS    | Diffuse reflectance spectroscopy            |
| SEM    | Scanning electron microscope                |
| WDXRF  | Wavelength Dispersive X-ray Fluorescence    |
| UV-Vis | Ultraviolet-visible spectroscopy            |
| E.G.   | Ethylene glycol                             |

## **Summary**

Due to the urgently need for energy and as result of the continuous increase of the population, the scientists turned to find a new constant source of energy. Many researches have been held to achieve this goal. Among these was the research of hydrogen production using titanium dioxide nanotubes. Therefore, in this work we tried to improve the efficiency of TiO<sub>2</sub> nanotube arrays by means electrodeposition technique. We have studied the effect of the solvent through preparation of different samples of the TiO<sub>2</sub> nanotube arrays by execute the samples using the same conditions with varying the solvent type. The TNTs have been prepared using two solvents: glycerol and ethylene glycol. Then, a modification has been proceeded using electrodeposition process in organic medium. Iron oxide has been deposited on the surface of TNTs samples using different concentration baths at different times of deposition.

The samples were characterized by field emission scanning electron microscope (FE – SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD) and UV– Vis diffuse reflection spectroscopy (DRS). Evaluation of all samples was done using a solar simulator.

FE-SEM images showed that iron oxide was successfully deposited on the surface and in-between the TiO<sub>2</sub> nanotube arrays. XRD analysis reported that the phase of TiO<sub>2</sub> nanotubes which was prepared either using ethylene glycol or glycerol was anatase phase.

The photocurrent was measured and the photoconversion efficiency was calculated. The measurements confirmed that iron oxide was successfully deposited on the surface of TiO<sub>2</sub> nanotubes and in-between the TiO<sub>2</sub> nanotube arrays. photoelectrochemical showed measurements significant enhancement of the photocurrent of the mixed oxide samples compared with TiO<sub>2</sub> nanotubes seldom in both solvents (glycerol and ethylene glycol) used in anodization of electrodes. The photocurrent showed a significant enhancement after 30 minutes of depositing iron oxide from 0.05 M Fe(NO<sub>3</sub>)<sub>3</sub> bath in case of TNTs prepared by glycerol resulting a photoconversion efficiency of 0.55% compared with unmodified TNTs which was 0.28 %. Also, a significant enhancement after 30 minutes of depositing iron oxide from 0.07 M Fe(NO<sub>3</sub>)<sub>3</sub> bath in case of TNTs prepared by ethylene glycol resulting a photoconversion efficiency of 0.43 % compared with unmodified TNTs which was 0.22 %.

The hydrogen production was measured and the maximum hydrogen production achieved was 15.87  $\mu$ mol/(cm².h) in case of TNTs prepared by glycerol and 12.52  $\mu$ mol/(cm².h) in case of TNTs prepared by ethylene glycol compared with the unmodified TiO<sub>2</sub> nanotube arrays which achieved hydrogen production of 4.17  $\mu$ mol/(cm².h) in case of TNTs prepared by glycerol and 5.40  $\mu$ mol/(cm².h) in case of TNTs prepared by ethylene glycol.

After evaluation of the samples which were prepared using ethylene glycol and which were prepared using glycerol and comparing between them, the TNTs electrode which was prepared by glycerol was chosen to make another modification.

The same work was performed by preparation of another modified TNTs using molybdenum. The modification was proceeded by electrodeposition of molybdenum oxide on the surface of TNTs prepared by glycerol by the same previous method with different bath concentrations. The samples were characterized by the same techniques used before in characterizing iron modified TNTs. Evaluation of the samples was measured using a solar simulator. The photoelectrochemical measurements showed a significant enhancement of the photocurrent of the mixed oxide samples

compared with  $TiO_2$  nanotubes seldom. The photocurrent showed a significant enhancement after 30 minutes of depositing molybdenum oxide from 0.05 M sodium molybdate bath. The photoconversion efficiency estimated is 0.44%. The hydrogen production was measured and the maximum hydrogen production achieved is 11.67  $\mu$ mol/(cm².h) compared with the unmodified  $TiO_2$  nanotube arrays which was 4.17  $\mu$ mol/(cm².h).

### Aim of Work

Our goal will not only be to achieve excellence in the academic world but also to provide some insights towards the solutions to technological applications in the real world. We will extend the synthesis and optimization of uniquely advantageous one-dimensional (1D) nanoarchitectures of various metal oxides and employ them to various solar energy conversion devices. The proposed work will include materials synthesis optimization while monitoring the dynamics of charge carriers.

This aim will be achieved by preparation of TiO<sub>2</sub> nanotube arrays electrodes using different solvents. Then, electrodeposition of various metal oxide on the surface of TNTs will be proceeded. In order to optimize the optical properties and photoconversion efficiency of TNTs, evaluation of the prepared electrodes will be done by measuring the photocatalytic efficiencies of them.