

Preparation of Some Photoactive and Thermal Conductive Nanomaterials and its Applications in Photocatalysis and Solar Collectors

Thesis submitted By

Mostafa Hussein El-Noss

B.Sc. (Chemistry&Biochemistry) 2007

To
CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
AIN-SHAMS UNIVERSITY
For
THE DEGREE
M.Sc. IN CHEMISTRY
(2011)

Thesis Advisors

Prof. Dr. M. S. A. Abdel-Mottaleb

Professor of Inorganic and Photochemistry Faculty of Science, Ain Shams University

Dr. Mohamed Said

Lecturer of inorganic and Photochemistry Faculty of Science, Ain Shams University

Dr. Esam Bakir

Lecturer of inorganic and Photochemistry Faculty of Science, Ain Shams University

Approval Sheet

Name of candidate: Mostafa Hussein El-Noss

Degree: M.Sc. Degree in Chemistry

Thesis Title: Preparation of Some Photoactive and Thermal Conductive Nanomaterials and its Applications in Photocatalysis and Solar Collectors

This Thesis has been approved by:

- 1- Prof. Dr. M. S. A. Abdel-Mottaleb
- 2- Dr. Mohamed Said
- 3- Dr. Esam Bakir

Approval

Prof. Dr.Maged Shafik Chairman of Chemistry Department

Preparation of Some Photoactive and Thermal Conductive Nanomaterials and its Applications in Photocatalysis and Solar Collectors

By

Mostafa Hussein El-Noss

B.Sc. (Chemistry&Biochemistry) 2007 Under the supervision of:

1- Prof. Dr. M. S. A. Abdel-Mottaleb

Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

2- Dr. Mohamed Said

Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

3- Dr. Esam Bakir

Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

ACKNOWLEDGEMENTS

I would like to thank many people for their kind help during my work.

First of all, I would like to express my sincerest appreciation to **Prof. SabryAbdel-Mottaleb** for his support and suggesting the point of research. The best times i have enjoyed here comprise those for working on research and discuss life. Your serious attitude, insightful view, and persistent pursuing in science strongly impress me, leading me on the way towards a scientific researcher. It also inspires me with the courage to fight for my dreams.

I have learned a lot from you.

It's really my pleasure to work with the nice members of the prof.Abdel-Mottaleb's group (**Dr.Mohamed said** and **Dr.Esambakir**), who joined the group before me, I appreciate your helping me start my experiments.

The financial support of STDF (project #1372) should be acknowledged.

Thank you Mom and Dad for the encouragement and support in my life.

Thanks regards

Mostafa Hussein

CONTENTS

PART I

1	Introduction	1
1.1	Nanotechnology	1
1.1.1	What is nanotechnology	1
1.1.2	Nanotechnology products and applications	3
1.1.2.1	Sporting Goods	3
1.1.2.2	Car Paint and Car Waxes	3
1.1.2.3	Antibacterial Cleansers	4
1.1.2.4	Medical Bandage	4
1.1.2.5	Apparel Industry	4
1.1.2.6	Sunscreens and Cosmetics	5
1.1.2.7	Organic Light-Emitting Displays or OLEDs	5
1.1.2.8	Titanium Dioxide and Clean Air	5
1.2	Nanocatalysts	6
1.3	Nanotechnology and the Environment	7
1.3.1	Water pollution	8
1.3.2	Treatment of Textile Waste Water	11
1.4	Advanced Oxidation Processes	13
1.4.1	Homogeneous Advanced Oxidation Processes	15
1.4.1.1	The O ₃ /UV Process	16
1.4.1.2	The H ₂ O ₂ /UV Process	16
1.4.1.3	UV Fenton's Processes	18
1.4.2	Heterogeneous Photocatalysis	19
1.4.2.1	Photocatalytic process	21
1.4.2.2	Photocatalytic Semi-conductor	22
1.5	Titanium dioxide	25
1.5.1	Historical Background of TiO ₂	25
1.5.2	Titanium dioxide structure	28
1.5.3	Titanium Degussa	29
1.5.4	Titanium dioxide Photocatalysis	30
1.5.5	Enhanchement of photocatalytic activity	34
1.5.5.1	Composite Semi-conductors	36

1.5.6	Practical Application of TiO ₂ Photocatalyst	39
1.6	Fundamental principles and application of	42
	heterogeneous photocatalytic degradation of	
	dyes in solution	
1.6.1	Introduction	42
1.6.2	Experimental techniques used for studying dye	46
	degradation	
1.6.3	Principles of photocatalysis and mechanistic	47
	pathways	40
1.6.3.1	Direct photocatalytic pathway	49 52
1.6.3.2	Indirect photocatalytic mechanism	52 52
1.6.4	Effect of operational parameters Effect of pH	52 52
1.6.4.1	Effect of the dose of semiconductor	53
1.6.4.2 1.6.4.3	Effect of the initial concentration of dye	54
1.6.4.4	Effect of additives	54
1.6.4.5	Effect of temperature	58
1.0.4.3 1.7	Literature Review	61
1.7		
	CHAPTER 2 Experimental Techniques	66
	and Methods	
2.1	Materials	66
2.1	Materials synthesis	67
2.2	Instrumentation	67
2.3		67
2.3.1	UV-VIS Measurements	67
2.3.2	XRD Measurements	
2.3.3	TEM Measurements	68
2.3.4	Photo illumination Setup	68
2.3.5	Centrifuge	68
2.3.6	pH meter	69
2.4	Preparations and General Procedures	69
2.4.1	Photodegradation of Dyes	
	- 11010 40 B140411011 01 22 J 00	69

	CHAPTER 3 Results and Discussion	71
3.1	Methods of Data Analysis	
3.1.1	The kinetic Rate Laws	71
3.1.2	Adsorption and Photodegradation Kinetics	73
3.2	XRD analysis	76
3.3	Data Analysis and Handling	77
3.3.1	Statistical and Data Handling Package	77
3.4	Catalyst characterization	77
3.4.1	Crystal properties and morphology	77
3.4.1.1	XRD	77
3.4.1.2	TEM	80
3.4.2	Optical properties	82
3.5	Photocatalytic degradation of Dyes 1 and 2	83
3.5.1	Photocatalytic activity	83
3.5.2	Kinetic studies	85
3.5.3	Synergistic Photocatalytic Activity	88
3.6	Enhancement of Photocatalytic activity of	92
	${ m TiO_2}$	
	Summary and conclusion of part I	97
	References of part I	101

	PART II	151
	CHAPTER 4 INTRODUCTION	1.57
	CHAPTER 5 EXPERIMENTAL	157
	TECHNIQUES AND METHODS	
5.1	Experimental and Methods	157
5.1.1	Reagents and Chemicals	157
5.1.2	Preparation of nanofluids	157
5.1.2.1	Preparation of TiO ₂ nanofluids	157
5.1.2.2	Preparation of CuO nanofluids	158
5.1.2.3	Preparation of ZnO nanofluids	159
5.1.2.4	Preparation of Fe ₃ O ₄ nanofluids	159
5.2.	Instrumentation	160
5.2.1	XRD Measurements	160
5.2.2	TEM Measurements	160
5.2.3	Description of Thermal Conductivity	161
	Measurements Set-Up used	
5.3	Experiment	163
5.4	Measurements of the thermal conductivity	163
	CHAPTER 6 RESULTS AND	
	DISCUSSION	
6.1		165
6.2	Characterization of nanoparticles Thermal analysis	169
	Summary and conclusion of part I	177
	Appendix	178

References of part II Arabic summary

LIST OF FIGURES

1.1.	Schematic representation of the "band gap model."	21
1.2.	Energies for various semi-conductors in aqueous	25
	electrolytes at pH=1.	
1.3.	Bulk structure of rutile and anatase.	28
1.4.	Schematic diagram of photocatalytic process initiated	31
	by photon acting on the semi-conductor.	
1.5. \$	Steps in heterogeneous photocatalytic reaction.	33
1.6. Ex	xcitation steps using dye molecule sensitizer.	36
1.7. P	Photo excitation in composite semi-conductor photo	37
catalys	st.	
1.8.	Major Areas of activity in titanium dioxide	40
Photo	catalysis.	
1.9. Th	hin-film-fixed-bed reactor.	41
1.10. 5	Super-hydrophilicity.	42
1.11.	Schematic diagram showing the generation of	46
oxidat	ive species in a photocatalytic study.	
1.12. I	Langmuir–Hinshelwood plot in the case of Coomassie	51
Blue d	legradation.	
3.1. XI	RD pattern of a, b where [a:pure TiO ₂ nanocrystal,	78
b: TiO	O ₂ – Cds nanocomposite).	
3.2. X	RD pattern of pure TiO ₂ nanocrystal and TiO ₂ –CdS	79
	nanocomposite	
3.3. T	EM image of a, b, c where [a: pure TiO ₂ nanocrystal,	81
b: CdS	S nanocatalyst, c: TiO ₂ –CdS nanocomposite].	

3.4. Normalized absorbance spectrum of TiO ₂ (Degauss)	83
and it's doped with 2% wt of nano CdS. (solid	
line TiO ₂ and dash line CdS–TiO ₂).	
3.5. (a) The visible-absorption spectra of aqueous solutions	84
of dyes 1 and 2 (b) Effect of catalyst in dark (line	
2) showing significant adsorption of the dye on	
the catalyst and effect of catalyst/UV-VIS at	
different time intervals (lines $3-7$).	
3.6. Comparison between the first order linear plots of	86
decolonization of Dye 1 [2.0x10 ⁻⁵ M] a] and Dye	
$2 [2.0x10^{-4} M]$ b] by CdS/TiO ₂ under UV-Vis	
and under visible light. ($\lambda_{analytical} = 490 \text{ nm}$).	
3.7. (a) A sketch of an Energy level diagram illustrating the coupling of CdS/TiO ₂ , in which electron transfer occurs from the visible light-activated CdS to the nonactivated TiO ₂ . (b) Energy level diagram showing the coupling of CdS and TiO ₂ , in which movement of both the electrons and holes is possible leading to synergistic e-/h+ production and separation.	
4.1. Growth of publications by the nanofluidscommunity.	154
5.1. The combined parabolic solar collector [CPSC].	162
6.1. TEM image of TiO ₂	165
6.2. TEM image of Fe ₃ O ₄	166
6.3. TEM image of CuO	166
6.4. TEM image of CuO	167
6.5. TEM image of ZnO	

6.6. XRD pattern of TiO ₂	168
6.7. XRD pattern of ZnO	168
6.8. XRD pattern of Fe ₃ O ₄	169
6.9. Thermal conductivity enhancement with particles	171
concentration for TiO ₂ /mono ethylene glycol nanofluids.	
6.10. Thermal conductivity enhancement particles	172
concentration for CuO/mono ethylene glycol nanofluids.	
6.11. Thermal conductivity enhancement particles	173
concentration for Fe ₃ O ₄ /mono ethylene glycol nanofluids.	
6.12. Thermal conductivity enhancement with particles	173
concentration for ZnO/mono ethylene glycol nanofluids.	
6.13. Enhancement of Thermal conductivity % with the best	174
particles concentration for ZnO, TiO ₂ , Fe ₃ O ₄ and CuO/mono	
ethylene glycol nanofluids.	

