EFFECT OF ADDITION OF SOME PLANT EXTRACTS TO ANTIBIOTICS ON PATHOGENIC STAPH.AUREUS

By

ASMAA FAROUK HUSSEIN

B.Sc. (Biochem. and Microb.), Fac. of Agriculture, Cairo Univ. (2009)

A thesis submitted in partial fulfillment

Of

The Requirements for the Degree of

MASTER OF SCIENCES in Agricultural Sciences (Agricultural Microbiology)

Department of Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF ADDITION OF SOME PLANT EXTRACTS TO ANTIBIOTICS ON PATHOGENIC STAPH.AUREUS

By ASMAA FAROUK HUSSEIN

B.Sc. (Biochem. and Microb.), Fac. of Agriculture, Cairo Univ. (2009)

This thesis for M.Sc. degree has been approved by: Dr. Eman Hussein Ashour Prof. of Microbiology, Fac. of Agric., El-Mansoura University Dr. Hemmat Mohammed Abdelhady Prof. Emeritus of Agric. Microbiology, Fac. of Agric., Ain Shams University Dr. Rawia Fathy Gamal Prof. Emeritus of Agric. Microbiology, Fac. of Agric., Ain Shams University Dr. Abdel-Mohsen Ahmed Abdullah Prof. Emeritus of Agric. Microbiology, Fac. of Agric., Ain Shams University

Date of Examination: / / 2017

EFFECT OF ADDITION OF SOME PLANT EXTRACTS TO ANTIBIOTICS ON PATHOGENIC STAPH.AUREUS

By

ASMAA FAROUK HUSSEIN

B.Sc. (Biochem. and Microb.), Fac. of Agriculture, Cairo Univ. (2009)

Under the supervision of:

Dr. Abdel-Mohsen Ahmed Abdullaa

Prof. Emeritus of Agric Microbiology, Agric. Microbiology Dept., Fac. of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Rawia Fathy Gamal

Prof. Emeritus of Agric. Microbiology, Agric. Microbiology Dept., Fac. of Agriculture, Ain Shams University.

Dr. Ahmed Farid Abdel-Salam

Head Research of Microbiology, Regional center for Food and Feed. Agric. Research center (ARC) Giza- Cairo.

ABSTRACT

Asmaa Farouk Hussein. Effect of Addition of some Plant Extracts to Antibiotics on Pathogenic *S. aureus*. Unpublished M. Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2017.

Searches for substance with antimicrobial activity are frequent and medicinal plants have been considered interesting by some researches since they one frequently used in popular medicine as remedies for many infectious diseases. The aim of the study was to verify the antibacterial effect of aqueous, methanolic extracts and their essential oils of plants [clove (Syzygium aromaticum), mint (Mentha piperita), Thyme (Thymus vulgaris), Garlic (Allium sativium), Sage (Salvia officinalis)] against 5 isolates of S .aureus isolated from pyogenic infections. The agar well diffusion method was the antimicrobial susceptibility performed test. S .aureus isolated from pleural fluid (P.F) out of five S .aureus (coagulase +ve, MSSA) exhibits resistant against all the concentration of Ciprofloxacin 0.5-20, Gentamycin 0.5- 5.0 µg/100µl and Amikacin 1 μg/100μl. The highest potent of phytoextracts either extracted by water or methanol was detected by clove comparing with mint, thyme, sage and garlic against all isolate, whereas garlic essential oil gave completely abolish of S. aureus P.F & T.B. Among 149 trials of combination between the lowest concentration of four antibiotics and different phytoextracts with different ratios against five pyogenic bacterial isolates .The combination between gentamycin and garlic essential oil with ratio 1: 3 represent high potent synergism against B.F, A.F and W.L (boils & abscess in face and wound in leg) isolates. Whereas, the combination between the same antibiotic and thyme essential oil with 1:3 gave high synergism against P.F and T.B isolates of S. aureus. The combination between garlic Eso + lowest concentration of Gentmycin (1:3) increment the synergism by 6.4, 2.5 and 6.0 fold against B.F., A.F and W.L isolates respectively comparing with standard concentration of gentamycin. On the other hand, using thyme Eso (100µl/well) resulted to increase the antibacterial (IZD) activity by 2.4 and 4.4 fold comparing with standard Gentamycin against P.F and T.B isolates. Increasing the concentration of garlic essential oil (G Eso) from 10 up to 100 µl/well increment the efficacy of inhibition up to 10, 3.7 and 4.5 fold when standard dose of Gentamycin, Vancomycin and Amikacin were used individually against S .aureus P.F (KY859805). The minimum bactericidal concentration of garlic essential oil was recorded at $2\mu l/100\mu L$ as it resulted to reduce the count to be 0.04%. . Analysis of garlic essential oil by GC-MS dedicated six sulfur compounds represented 88.86% of total detected compounds in garlic essential oil.

Key Words: *S .aureus*, Antibiotics, Phytoextract, Synergistic effects, MBC, 16S r RNA, GC-MS spectrometry.

ACKNOWLEDGMENT

My sincerest gratitude is due to Allah, who provided me with the blessings and health to finish this thesis. He encompassed me with His mercy and guidance in every step on the way.

My deepest gratitude and sincere thanks to Prof. Dr. Abdel-Mohsen Ahmed Abdullah, Professor Emeritus of Microbiology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I would like to express my dearest gratefulness to my supervisor Prof. Dr. Rawia F. Gamal, Professor Emeritus of Microbiology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for her supervision, continuous guidance, and kindness and also for his faith in my research and his confidence in me as a person. Her truly scientist nature was a continuous source of inspiration for me during the work and provided me with all the encouragement and support I needed throughout my thesis.

I'm greatly indebted to express my special thanks and great appreciation to Prof. Dr. Ahmed Farid Abdel-Salam, Professor of Microbiology, Regional center of foods and feeds, Agric. Research center (ARC), for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I'm greatly indebted to express my special thanks and great appreciation to Dr. Mahmoud Magdy Elmosallamy, Assistant prof. of Genetics, Dept. of Genetics, Faculty of Agriculture, Ain Shams University, for constant support and unlimited helping in Molecular Identification of the *S. aureus* isolate.

I would like to express my great appreciation to all staff members of the Dept. of Agric. Microbial., Fac. of Agric., Ain Shams Univ. for their help and cooperation during the investigation.

At last, but never the least, a very heartfelt gratitude goes to my Family and my colleagues for their cooperation and kind encouragement during my study.

CONTENTS

		Page
	LIST OF TABLES	\mathbf{V}
	LIST OF FIGURES	VIII
	LIST OF ABBREVIATIONS	XIV
1-	INTRODUCTION	1
2-	REVIEW OF LITERATURE	4
2.1	Environmental distribution of Staphylococcus aureus	4
2.2	Morphology and cultural characterization	5
2.3	Identification of Staphylococcus aureus	6
2.4	Pathogenesis of S. aureus	6
2.5	Virulence factors of Staphylococci	7
2.6	Biofilm production	8
2.7	Significance of biofilm formation	9
2.8	Medicinal plants	10
2.8.1	GARLIC	14
2.8.2	CLOVE	17
2.8.3	THYME	19
2.8.4	SAGE	20
2.8.5	MINT	21
3-	MATERIALS AND METHODS	24
3.1	Materials	24
3.1.1	Samples	24
3.1.2	Media used for isolation and identification of <i>S</i> .	
	aureus	24
3.1.3	Stains	27
3.1.4	Reagent and solutions	27
3.1.5	Biological materials	27
3.1.6	Reagents for biofilm production by Microtiter plate	
	assay (Mtp)	27
3.1.7	Tryptic soy broth (TSB)	27
3.1.8	Scientific names of medicinal plants	28

3.1.9	Antibiotics
3.2.	Methods
3.2.1	Collection and preparation of samples
3.2.2	Bacteriological examinations
3.2.3	Microscopical examinations
3.2.4	Biochemical reactions
3.2.4.1	Catalase activity test
3.2.4.2	Mannitol fermentation
3.2.4.3	Coagulase test
3.2.4.3.1	Slide coagulase test
3.2.4.3.2	Tube Coagulase
3.2.5	Biofilm production of investigated S. aureus isolate
	using microtiter plate (MtP) assay
3.2.6	Detection of MRSA (methicillin –resistant strain)
3.2.7	Preparation of plant extracts
3.2.7.1	Aqueous Extraction
3.2.7.2	Solvent extraction
3.2.7.3	Essential oils
3.2.8	Preparation of inoculum
3.2.9	Antibiotics used
3.2.10	Antibacterial activity of Antibiotic or plant extracts by
	well diffusion method
3.2.11	Minimal inhibitory concentration assay (MIC)
3.2.12	Evaluation of the synergistic effect
3.2.13	Determination of minimal bactericidal concentration
	(MBC)
3.2.14	Molecular identification
3.2.14.1	DNA extraction
3.2.14.2	PCR
3.2.14.3	DNA sequencing
3.2.15	GC-MS analysis of garlic essential oil

	Page
RESULTS AND DISCUSSION	37
Distribution of S. aureus (coagulase +ve) isolated from	
different specimens of pyogenic infections	37
Biofilm formation of the tested S. aureus using	
microtiter plate (Mtp)	40
Antimicrobial activity of different concentration of	
antibiotics (µg/100µl) against S. aureus isolated from	
different specimen of pyogenic infections which	
express as zone of inhibition (mm)	42
Antibacterial activity of tested phytoextracts by	
different methods on the viability of the isolated	
S. aureus express as zone inhibition (mm)	47
Synergism effect between plant extracts and lowest	
inhibition concentration of antibiotics against S. aureus	
isolated from boils in face (B.F) using well diffusion	
method	52
Synergism effect between plant extracts and lowest	
inhibition concentration of antibiotics against S. aureus	
isolated from abscess in face (A.F) using well diffusion	
method	62
Synergism effect between plant extracts and lowest	
inhibition concentration of antibiotics against S. aureus	
isolated from tumor in breast (T.B) using well diffusion	
method	70
Synergism effect between plant extracts and lowest	
inhibition concentration of antibiotics against S. aureus	
isolated from pleural fluid (P.F) using well diffusion	
method	79
Synergism effect between plant extracts and lowest	
inhibition concentration of antibiotics against S. aureus	
isolated from wound in leg (W.L) using well diffusion	85
	Distribution of <i>S. aureus</i> (coagulase +ve) isolated from different specimens of pyogenic infections Biofilm formation of the tested <i>S. aureus</i> using microtiter plate (Mtp)

		Page
	method	81
	Molecular Identification of the S. aureus isolate	96
	Comparative studies between different concentrations of Garlic essential oil and standard concentration of effective antibiotics against <i>S. aureus</i> (P.F No. KY859805) expressed as efficacy fold	99
	concentration (MBC)	101
	Analysis of garlic Eso by GC-MS spectrometry	103
5	SUMMARY	108
6	REFERENCES	112
	ARARIC SUMMARY	

LIST OF TABLES

No.		Page
1.	Percentage distribution of S. aureus (coagulase +ve) isolated	
	from different specimen of pyogenic infections	38
2.	Biofilm formation of S. aureus isolates using Mtp	40
3.	Antimicrobial activity of different concentration of antibiotics	
	(μg/100μl) against S. aureus isolated from different specimen	
	of pyogenic infections which express as zone of inhibition	
	(mm)	44
4.	Antibacterial activity of tested phytoextracts by different	
	methods on the viability of the isolated S. aureus express as	
	zone inhibition (mm)	50
5.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus B.F comparing to phytoextract	
	or standard dose of Gentamycin	54
6.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus B.F comparing to phytoextract	
	or standard dose of Ciprofloxacin	56
7.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus B.F comparing to phytoextract	
	or standard dose of Vancomycin	58
8.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus B.F comparing to phytoextract	
	or standard dose of Amikacin	60
9.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus A.F comparing to phytoextract	
	or standard dose of Gentamycin	63

No.		Page
10.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus B.F comparing to phytoextract	
	or standard dose of Ciprofloxacin	65
11.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus A.F comparing to phytoextract	
	or standard dose of Vancomycin	67
12.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus A.F comparing to phytoextract	
	or standard dose of Amikacin	69
13.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus T.B comparing to phytoextract	
	or standard dose of Gentamycin	63
14.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus T.B comparing to phytoextract	
	or standard dose of Ciprofloxacin	74
15.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus T.B comparing to phytoextract	
	or standard dose of Vancomycin	76
16.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus T.B comparing to phytoextract	
	or standard dose of Amikacin	78

No.		Page
17.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus P.F comparing to phytoextract	
	or standard dose of Gentamycin	81
18.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus P.F comparing to phytoextract	
	or standard dose of Vancomycin	82
19.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus P.F comparing to phytoextract	
	or standard dose of Amikacin	84
20.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus W.L comparing to phytoextract	
	or standard dose of Gentamycin	87
21.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus W.L comparing to phytoextract	
	or standard dose of Ciprofloxacin	88
22.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus W.L comparing to phytoextract	
	or standard dose of Vancomycin	90
23.	Efficacy of synergism (expressed as folds) between the lowest	
	inhibitory concentration of the antibiotic with different ratios of	
	plant extracts against S. aureus W.L comparing to phytoextract	
	or standard dose of Amikacin	91
24.	Comparative studies between different concentrations of Garlic	
	essential oil and standard concentration of effective antibiotics	
	against S. aureus (P.F No. KY859805) expressed as efficacy	
	fold	100

No.		Page
25.	Evaluation of antimicrobial potential of garlic Eso	
	concentration against pathogenic S. aureus (P.F NO.	
	KY859805) in order to detect the minimal bacteriocidal	
	concentration (MBC)	102
26.	Chemical constituents (%) of garlic Eso detected by GC-MS	
	spectrometry	105