

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

ENHANCEMENT OF FIRE RESISTANCE OF REINFORCED CONCRETE BEAMS USING DIFFERENT TECHNIQUES

By NADY MOHAMED ABDEL-FATTAH

Thesis submitted for partial fulfillment of the Degree of Doctor of Philosophy in Civil Structural Engineering

Supervisors

Prof. Dr. Omar Aly Musa El Nawawy Prof. Dr. Abdel Salam Ahmed Mokhtar

Professor of Reinforced Concrete Structures

Faculty of Engineering

Ain Shams University

Professor of Structural Analysis

Faculty of Engineering

Ain Shams University

Prof. Dr. Hala Gamal El-Din El-Kady

Head of Civil Engineering Department, National Research Center - Eldokky

Cairo, Egypt 2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

APPROVAL SHEET

: Doctor of Philosophy in Civil Structural Engineering

Thesis

Date: / / 2017

Student Name: Nady Mohamed Abdel-Fattah Morsy	
Thesis Title: Enhancement of Fire Resistance of Reinforced Concrete	Beams
Using Different Techniques	
Examiners Committee :	Signature
Prof. Dr. Khalid Mahmoud Mosalam .	• • • • • • • • • • • • • • • • • • • •
Professor of Structural Engineering, Faculty of Engineering, University of California, Berkeley (External Examiner)	
Prof. Dr. Ayman Hussein Hosny Khalil Professor of Reinforced Concrete Structures, Faculty of Engineering, Ain Shams University (Internal Examiner)	•••••
Prof. Dr. Omar Aly Musa El Nawawy Professor of Reinforced Concrete Structures, Faculty of Engineering, Ain Shams University (Supervisor)	••••••
Prof. Dr. Abdel Salam Ahmed Mokhtar Professor of Structural Engineering, Faculty of Engineering, Ain Shams University (Supervisor)	••••••

ACKNOWLEDGMENT

Thanks are conveyed to **GOD** for his support.

Thanks and gratitude are due to the supervisor's team *Prof. Dr. Omar Aly Musa El Nawawy*, *Prof. Dr. Abdel Salam Ahmed Mokhtar* and *Prof. Dr. Hala Gamal El-Din El-Kady* for their guidance, knowledge and time to accomplish this work.

Gratitude is conveyed to my family for their understanding, encouragement, and support. Without their support, this work would have never being accomplished.

Special thanks are due to *Eng. Mohamed Ayman* and *Eng. Abdel-Rahman*Naguib due to their significant help and cooperation.

STATEMENT

This thesis is submitted to Ain Shams University for the Degree of Doctor of Philosophy in Civil Structural Engineering.

No part of this thesis has been previously submitted for obtaining a degree or a qualification.

Name	: Nady M	Ioha	med A	bdel-F	attah
Date	:	/	/		
Signat	ure :				

ABSTRACT

In terms of the importance of modifying the concrete properties to perform efficiently under severe fire conditions, this study was initiated with the objective of enhancing the fire resistance of reinforced concrete beams. In order to achieve the above objective, the researcher designed a methodology that encompassed five investigation phases (i.e. theoretical, experimental, numerical modeling, analytical and inferential phases). During the Theoretical Phase, literature was reviewed in the field of concrete fire resistance in order to assess the previously implemented experimental and analytical procedures. All through *Experimental Phase*, the researcher carried out an experimental study to evaluate the enhancement of the mechanical and thermal properties of concrete with steel fibers. Throughout Numerical Modelling Phase, the researchers established a finite element model to simulate a reinforced beam with steel fibers under hightemperature conditions, where assumptions and simplifications were put forward. In addition, verification was carried out to the model results versus the experimental results. In the course of *Analytical phase*, a parametric study was achieved to verify the enhancement of steel fibers using a fullscale reinforced concrete beam. During *Inferential Phase*, conclusions were provided and recommendations were suggested for future work and engineering practice.

TABLE OF CONTENTS

		PAGE
Abstra	ct	i
Ackno	wledgr	nents
Statem	ent	iii
Table (Of Cor	ntentsiv
List Of	f Figur	res
List Of	f Table	es
CHAI	PTER	1 – INTRODUCTION
1.1	RESI	EARCH OBJECTIVES3
1.2	RESI	EARCH METHODOLOGY
1.3	THE	SIS LAYOUT5
CHAI	PTER	2 – LITERATURE REVIEW7
2.1	EFFI	ECT OF FIRE TEMPERATURES ON CONCRETE
	2.1.1	STRESS-STRAIN RELATIONSHIP
	2.1.2	STRESS-STRAIN DIAGRAMS
	2.1.3	ELASTIC MODULUS
	2.1.4	TENSILE STRENGTH
	2.1.5	CONCRETE IN TENSION
	2.1.6	COMPRESSIVE STRENGTH
	2.1.7	BENDING STRENGTH
	2.1.8	THERMAL ELONGATION
	2.1.9	SPECIFIC HEAT

	2.1.10 THE DENSITY	25
	2.1.11 THERMAL CONDUCTIVITY	25
2.2	FACTORS AFFECTING CONCRETE PERFORMANCE	26
	2.2.1 SPECIMEN DIMENSIONS	26
	2.2.2 LOADING CONDITIONS	. 27
	2.2.3 CONCRETE STRENGTH	. 27
	2.2.4 COOLING CONDITIONS	. 28
2.3	EFFECT OF FIRE TEMPERATURES ON RC BEAMS	29
2.4	FIRE TEMPERATURE EFFECT ON RC BEAMS WITH FIBER	36
CHAI	PTER 3 – EXPERIMENTAL WORK	53
3.1	MATERIALS	
	55	
	3.1.1 CEMENT	55
	3.1.2 AGGREGATE	55
	3.1.3 WATER	56
	3.1.4 SUPERPLASTICIZER	56
	3.1.5 STEEL FIBERS	57
3.2	CONCRETE MIXING	58
3.3	PREPARATION OF SPECIMENS	. 58
3.4	CURING OF SPECIMENS	60
3.5	TESTING OF SPECIMENS	. 61

Cl	HAP	PTER 4 – EXPERIMENTAL RESULTS AND DISCUSSIONS 6	j 4
	4.1	RESULTS AFTER 7 DAYS6	6
	4.2	RESULTS AFTER 28 DAYS (NO FIRE)	9
	4.3	RESULTS AFTER 1 HOUR UNDER 500°C	′2
	4.4	RESULTS AFTER 2 HOUR UNDER 500°C	6
	4.5	REDUCTION OF ULTIMATE LOADS DUE TO FIRE	80
	4.6	SHAPE OF FAILURE	2
	4.7	COMMENTS9	5
Cl	HAP	PTER 5 – NUMERICAL MODELLING	
9			9
	5.1	FEM FOR PLAIN AND SFRC BEAMS	Ю
		5.1.1 ELEMENTS TYPES	0
		5.1.1.1. CONCRETE ELEMENT)1
		5.1.1.2. STEEL REINFORCEMENT ELEMENT	1
		5.1.2 REAL CONSTANTS	2
		5.1.3 MATERIAL PROPERTIES	14
		5.1.3.1. MATERIAL MODEL NUMBER 1	14
		5.1.3.2. MATERIAL MODEL NUMBER 2	15
		5.1.4 DETAILING OF THE FIRST MODEL FOR BEAMS	16
		5.1.5 NUMBERING CONTROLS	17
		5.1.6 LOADS AND BOUNDARY CONDITIONS	17
		5.1.7 ANALYSIS TYPE	18
		5.1.8 ANALYSIS PROCESS FOR THE FINITE ELEMENT MODEL 10)8

	5.1.9 FE RESUL	15 COMPARED TO EXPERIMENTAL I	KESUL1S109
5.2	FEM FOR SFRC	BEAMS SUBJECTED TO TEMPERATUR	RE 110
	5.2.1 THERMAL	MODEL	110
	5.2.1.1 EL	EMENTS TYPES	110
	5.2.1.2 MA	ATERIAL PROPERTIES	
	1	1	1
	5.2.1.3 NU	JMBERING CONTROLS	113
	5.2.1.4 AN	NALYSIS TYPE	113
	5.2.2 STRUCTUR	AL MODEL	116
	5.2.2.1 DE	SCRIPTION OF THE MODEL	116
	5.2.2.2 MA	ATERIAL MODELS	117
	5.2.2	.2.1 MATERIAL MODEL NUMBER 1	117
	5.2.2	.2.2 MATERIAL MODEL NUMBER 2	117
	5.2.2.3 AN	NALYSIS TYPE	124
CHAP	TER 6 – PARAI	METRIC STUDY	125
6.1	DESCRIPTION OF	THE EXPERIMENTAL PROGRAM	127
	6.1.1 GEOMI	ETRY OF THE REINFORCED CONCRETE	E BEAM 127
	6.1.2 REINFO	DRCEMENT OF THE BEAM	128
	6.1.3 MATER	RIAL CHARACTERISTICS OF THE BEAN	4 128
	6.1.4 INSTRU	JMENTATIONS	
	1	2	9
	6.1.4.	1 THERMOCOUPLES	129
	6.1.4.2	2 DISPLACEMENT DIAL GAUGES	129

	6.1.5 TEST SET UP FOR THE BEAM
	6.1.6 EXPERIMENTAL RESULTS
6.2	FEM FOR RC BEAMS WITH AND WITHOUT FIBER
	6.2.1 ELEMENTS TYPES
	6.2.2 REAL CONSTANTS
	6.2.2.1 CONCRETE REAL CONSTANTS
	6.2.2.2 REINFORCEMENT REAL CONSTANTS
	6.2.3 MATERIAL PROPERTIES FOR BEAMS
	6.2.3.1 MATERIAL MODEL NUMBER 1
	6.2.3.2 MATERIAL MODEL NUMBER 2
	6.2.3.3 MATERIAL MODEL NUMBER 3
	6.2.4 DETAILING OF THE 1 st MODEL FOR BEAMS 140
	6.3.4.1 CONCRETE DETAILING
	6.3.4.2 REINFORCEMENT DETAILING
	6.2.5 NUMBERING CONTROLS
	6.2.6 LOADS AND BOUNDARY CONDITIONS
	6.2.7 ANALYSIS TYPE
	6.2.8 ANALYSIS PROCESS FOR THE FINITE ELEMENT MODEL
	142
	6.2.9 FINITE ELEMENTS RESULTS
	6.3 FEM FOR RC BEAMS WITH-WITHOUT FIBER UNDER FIRE 145
	6.3.1 THERMAL MODEL
	6 3 1 1 ELEMENTS TYPES 146

	6.3.1.2 REAL CONSTANT
	6.3.1.3 MATERIAL PROPERTIES
	6.3.1.3.1 MATERIAL MODEL NUMBER 1 146
	6.3.1.3.2 MATERIAL MODEL NUMBER 2 AND 3 146
	6.3.1.4 ANALYSIS TYPE
	6.3.1.5 THERMAL RESULTS
	6.3.2 STRUCTURAL MODEL
	6.3.2.1 DESCRIPTION OF THE MODEL
	6.3.2.2 MATERIAL MODELS
	6.3.2.2.1 MATERIAL MODEL NUMBER 1159
	6.3.2.2.2 MATERIAL MODEL NUMBER 2 163
	6.3.2.2.3 MATERIAL MODEL NUMBER 3 166
	6.3.2.3 ANALYSIS TYPE
	6.3.2.4 STRUCTURAL RESULTS
CHAP	TER 7 – CONCLUSIONS AND RECOMMENDATIONS 173
7.1	CONCLUSIONS
7.2	RECOMMENDATIONS

LIST OF FIGURES

FIGURE PAGE

CHAPTER 2

Figure 2.1 Load-deformation Relationships at Different Temperatures for HSC 10
Figure 2.2 Load-Deformation Relationship at Different Temperature for NSC 10
Figure 2.3 Stress-Strain Curves for HSC
Figure 2.4 Stress-strain relationship of a siliceous aggregate concrete C30/37 for
different values of the concrete temperature
Figure 2.5 Stress-strain relationship for compressed concrete at elevated temperatures.
Redrawn from EN 1992-1-2 (2004)
Figure 2.6 Elastic Modulus of HSC as a Function of Temperature
Figure 2.7 The Variation Elastic Modulus of Concrete Mixes with the Temperature rise
Figure 2.8 Modulus of Elasticity-Temperature Relationship
Figure 2.9 Tensile Splitting Strength of Three Grades of Concrete Subjected To Different
<i>Temperatures</i>
Figure 2.10 Splitting Tensile Strength after Fire
Figure 2.11 Change in the Residual Splitting Tensile Strength in Concrete Mixes at 28
Days with the Rise of Temperatures
Figure 2.12 Relationship between Residual Splitting Tensile Strength and Temperature of
Plain fiber reinforced concrete
Figure 2.13 Reduction factor kc , $t(\theta)$ of the tensile strength (fck, t) of concrete at elevated
temperatures

Figure 2.14 Comparison of the reduction in compressive and tensile strength at elevated
temperatures
Figure 2.15 Compressive Strength of HSC with Temperature
Figure 2.16 Concrete Compressive Strength Subjected to elevated Temperatures 19
Figure 2.17 Percentage of Residual Compressive Strength Subjected to elevated
Temperatures
Figure 2.18 Concrete Compressive Strength subjected to elevated Temperature 20
Figure 2.19 Effect of Temperature on the Concrete Strength
Figure 2.20 Bending Strength after Fire
Figure 2.21Comparison the Hot and Residual Flexural Strength for
<i>NSC1</i> 22
Figure 2.22Comparison the Hot and Residual Flexural Strength for
<i>HSC1</i>
Figure 2.23 Total thermal elongation & of concrete as a function of concrete
temperature θ
Figure 2.24 Specific heat cp of concrete as a function of concrete temperature $\theta \dots 24$
Figure 2.25 Thermal conductivity of concrete
Figure 2.26 Effect of Specimen Size on Compressive Strength after High Temperature
Expose
Figure 2.27 The Compressive Strength before and after Exposure To
800 °C
Figure 2.28 The Compressive Strength before and after Exposure To
1100 °C

Figure 2.29 Load –Deflection curves
Figure 2.30 Load –Strain curves
Figure 2.31 Comparison of Load at Initial Crack at different Temperature
Figure 2.32 Comparison of Damage at different Temperature
Figure 2.33 Effects of Heating Temperature and Cooling Method on Ultimate Strength of
Heated RC Beam
Figure 2.34 Effects of Heating Temperature and Cooling Method on Residua
<i>Deformation</i>
Figure 2.35 Effect of Temperature on The Residual Moment Capacity of Beam Specimens
For (1) Hour Period of Exposure
Figure 2.36 Effect of Temperature on The Residual Moment Capacity of Beam Specimens
For (1.5) Hour Period of Exposure
Figure 2.37 Effect of Temperature on The Shear Strength of Deep Beam Specimens For
(1) Hour Period of Exposure
Figure 2.38 Effect of Temperature on The Shear Strength of Deep Beam Specimens For
(1.5) Hour Period of Exposure
Figure 2.39 The Failure Load and Deflection of RC Beam with Different Cooling
Methods
Figures 2.40 (MOR) vs. temp. for mix A
Figures 2.41 (MOR) vs. temperature for mix B
Figures 2.42 (MOR) vs. temp. for different heating duration
Figures 2.43 (MOR) vs. temperature for different cooling conditions

Figure 2.44 Stress-strain curves at various temperatures for: a-Plain carbonate concrete,
b- SFRC with carbonate aggregate, c- SFRC with siliceous aggregate
Figure 2.45 temperatures variation with: a- compressive strength b- ultimate strain
c- modulus of elasticity (for all mixes types)
Figure 2.46 Normalized compressive strength vs. Temperature
Figure 2.47 Normalized elastic modulus vs. Temperature
Figure 2.48 Stress-Strain curves for: a) Siliceous aggregate HSC without steel fibers,
b) Siliceous aggregate HSC with steel fibers
Figure 2.49 Stress-Strain curves for: a) Carbonate aggregate HSC without steel fibers,
b) Carbonate aggregate HSC with steel fibers
Figure 2.50 Effect of temperature on: a) Modulus of elasticity for different fiber
percentages b). Compressive strength for different fiber percentages
Figure 2.51 Flexural Strength at different temperatures for a) NSC b) HSC44
Figure 2.52 Concrete compressive strength vs. temperature
Figure 2.53 Effect of elevated temperature on: a) Tensile Strength b) Modulus of
elasticity c) Impact strength
Figure 2.54 Influence of the level of temperature exposure on: a) Residual Young's
modulus b) Residual compressive strength
Figure 2.55 The effect of fire flame on the compressive strength of plain and FRHSC at
1.0 hour period of exposure 48
Figure 2.56 The effect of fire flame on the splitting tensile strength of plain and FRHSC
at 1.0 hour period of exposure
Figure 2.57 Deformation to plain concrete vs. temperature