

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

STUDY OF THE ROLE OF PLASMA HOMOCYSTEINE AND LIPOPROTEIN (a) IN CORONARY ARTERY DISEASE

Thesis

Submitted to the Faculty of Medicine University of Alexandria In Partial Fulfillment of the requirements of

Master degree of Biochemistry

By

Riham Said Chamse El Dine MBB.Ch. (Alex.)

Faculty of Medicine Alexandria University

SUPERVISORS

Prof. Dr. Samia Mohamed I. Elewa

Professor and Head of Medical Biochemistry Department Faculty of Medicine University of Alexandria

Drof. Dr. Ebtihag Ahmed Hamdi

Professor and Head of Cardiology and Angiology Unit Faculty of Medicine University of Alexandria

Dr. Nadia Ahmed Barghash

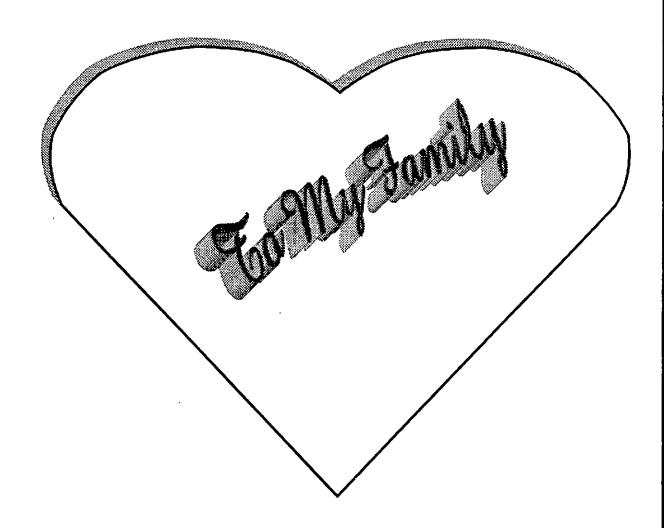
Assistant professor of Medical Biochemistry Faculty of Medicine University of Alexandria

Co- Worker Dr. Ayman Abdo Barghash

Lecturer of Medical Biochemistry
Faculty of Medicine
University of Alexandria
For expert assistance in estimation of the laboratory investigations

ACKNOWLEDGMENTS

First and foremost, praise to be done to ALLAH, the most merciful and most compassionate, without his help nothing could be done.


I would like to express my deepest gratitude and appreciation to **Prof. Dr. Samia Mohamed I. Elewa**, Professor and Head of department of Medical Biochemistry, Faculty of Medicine, University of Alexandria for the stimulating and encouraging supervision I received from her, and her real understanding and endless encouragement all the time.

I am indebtedly grateful to **Prof. Dr. Ibtihag A. Hamdi**, Professor and Head of Cardiology and Angiology Unit, Faculty of Medicine, University of Alexandria for her sincere guidance and help throughout this work.

I am sincerely thankful to **Dr. Nadia A. Barghash**, Assistant Professor of Medical Biochemistry, Faculty of Medicine, University of Alexandria for her great help, useful instructions, and her courage in leading the events, pushing me always forward all the time, she is a real example of a very close and always ready sister.

I owe special everlasting thanks to **Dr. Ayman A. Barghash**, Lecturer of Medical Biochemistry, Faculty of Medicine, University of Alexandria for his continuous encouragement and sincere cooperation in this work.

Words of gratitude are not enough to express my appreciation for all my professors, my colleagues in the Biochemistry Department, Faculty of Medicine, University of Alexandria, for their encouragement and kind interest in this study.

CONTENTS

C	Chapter	Page
<u> </u>	Introduction	1
	Aim of the work	4 7
a	Material	48
0	Methods	50
	Results	79
	Discussion	114
	Summary	130
۵	Conclusions	133
0	Recommendations	134
0	References	135
0	Protocol	
0	Arabic Summary	

LIST OF ABBREVIATIONS

ADP, ATP Adenosine di, triphosphates

ALT Alanine aminotransferase

Apo A, B, C, E Apolipoproteins A, B, C, E.

APPT Activated partial thromboplastin time

AST Aspartate aminotransferase

BH₄ Tetrahydrobiopterin

CAD Coronary artery disease

CHD Coronary heart disease

C DNA Complementary deoxyribonucleic acid

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

EGF Epidermal growth factor

ELISA Enzyme- linked immunosorbent assay

eNOS Endothelial nitric oxide synthase

FH Familial hypercholesterolemia

HDL High- density lipoproteins

HDL-ch High- density lipoproteins- chlesterol

HRP Horse radish peroxidase

ICAM-1 Intercellular adhesion molecule 1

IgG Immunoglobulin G.

LDL Low- density lipoproteins

LDL-ch Low - density lipoproteins - cholesterol

Lp (a) Lipoprotein (a)

LSD Least significant difference

mRNA Messenger ribonucleic acid

MTHE N5- methyl tetrahydrofolate

MTHER Methylenetetrahydrofolate reductase

NIDDM Non insulin dependent diabetes mellitus

NO Nitric oxide

PABA Para- aminobenzoic acid

PAI-1 Plasminogen activator inhibitor-1

PAs Plasminogen activators

PG Prostaglandins

PGA Pteroylglutamic acid

PT Prothrombin time

PVS Polyvinyl sulphate

RCL Reactive center loop

SAH S- adenosyl L- homocysteine

SDS Sodium dodecyl sulphate

Serpin Serine protease inhibitor

SPS Sample pre- treatment solution

TF Tissue factor

TG Tiglycerides

THF Tetrahydrofolic acid

t-PA, u-PA Tissue-type, urokinose-type plasminogen activators

TXA₂ Thromboxane A₂

VCAM-1 Vascular cell adhesion molecule - 1

VLDL Very low- density lipoproteins

Vn Vitronectin

INTRODUCTION

MTRODUCTION

CORONARY ARTERY DISEASE

The term coronary artery disease (CAD) defines a disease spectrum of diverse etiology, with the common factor being an imbalance between myocardial oxygen supply and demand. The term CAD has been used synonymously with coronary heart disease (CHD), or atherosclerotic heart disease.

Pathogenesis of CAD:

Myocardial ischaemia is considered as a discrepancy between myocardial oxygen requirements and the oxygen delivering capacity of the coronary circulation. (3) Atherosclerotic plaques are the most common cause of CAD. (4) When atherosclerosis significantly occludes the coronary artery, impairing the coronary flow, CAD ensues. (5)

The transition from stable to unstable angina pectoris probably results from a change in the surface of the atherosclerotic plaque, often rupture of the intima of the fibrous cap with subsequent haemorrhage, platelet aggregation, fibrin deposition, and thrombus formation or a sudden increase in smooth muscle tone, resulting in spasm of the coronary artery. Thrombosis superimposed on a stenotic atherosclerotic lesion is the most frequent cause of myocardial infarction. (6)

Coronary atherosclerosis:

Atherosclerosis is a progressive disease process that generally begins n childhood and has clinical manifestations in middle to late adulthood. It is a multifactorial process which requires extensive proliferation of the smooth muscles within the intima of medium size and large size arteries.⁽⁷⁾

The pathological aspects of atherosclerosis:

The two principal forms of atherosclerosis are the early lesion or the fatty streak and the advanced lesion or fibrous plaque, which can become a complicated lesion. (8) Fig. (1)

The fatty streak:

This is the most common lesion of atherosclerosis and occurs at all ages. It becomes evident in the coronary arteries during the second decade. The early fatty streaks appear to consist of macrophages together with a variable number of T-lymphocytes. As the lesions expand, they appear to contain smooth muscle cells that have migrated into the intima as well. Both the macrophages and the smooth muscle cells are laden with cholesterol and cholesterol oleate. These lesions are confined principally to the intima and being flat, they cause little or no obstruction of the affected artery and have no clinical sequelae. (11)

The fibrous plaque:

This is a more advanced lesion that begins to develop around the age of 25 in those populations in whom there is a high incidence of atherosclerosis. There is migration and proliferation of smooth muscle cells, forming a fibrous cap, owing to the deposition by these cells of new connective tissue matrix, including collagen, elastic fibers and proteoglycans and to the accumulation of intracellular and extracellular lipids. (11) The fibrous plaque is located in the intima and characteristically leads to eccentric thickening of the artery that often results in occlusion of the lumen. (10)