USING NANOTECHNOLOGY FOR NEW PRODUCT OF COTTON FABRIC

By

SAHAR EMAM MOHAMED EMAM SAUDI

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., Egypt, 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2017

SUPERVISION SHEET

USING NANOTECHNOLOGY FOR NEW PRODUCT OF COTTON FABRIC

M. Sc. Thesis

In

Agricultural Sci. (Agricultural Biochemistry)

By

SAHAR EMAM MOHAMED EMAM SAUDI

B.Sc. Agric. (Biochemistry), Fac. Agric., Cairo Univ., Egypt, 2010.

SUPERVISION COMMITTEE

Dr. EMAM ABDEL MOPDY

Professor of Biochemistry, Fac. Agric., Cairo University.

Dr. MOHAMED MAGDY RASHED

Professor of Biochemistry, Fac. Agric., Cairo University.

Dr. AZZA ABD EL- AZIZ MAHMOUD

Head Researcher Chemistry, Cotton Research Institute, ARC, Giza

APPROVAL SHEET

USING NANOTECHNOLOGY FOR NEW PRODUCT OF COTTON FABRIC

M. Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

SAHAR EMAM MOHAMED EMAM SAUDI

B.Sc. Agric. Sci (Biochemistry), Fac. Agric., Cairo Univ., 2010

APPROVAL COMMITTEE

Dr. Salah Moustafa Mahmoud Saad Professor of Biochemistry, Fac. Agric., Banha University	
Dr. Nadia Mohamed Abdel-Moien	
Professor of Biochemistry, Fac. Agric., Cairo University	
Dr. Mohamed MagdyRashed	
Professor of Biochemistry, Fac. Agric., Cairo University	
Dr. Emam Abdel- Mopdy Abdel-Rahim	
Professor of Riochemistry Fac Agric Cairo University	

Date: / 8/ 2017

Name of Candidate: Sahar Emam Mohamed Emam Degree: M.Sc.

Title of Thesis: Using Nanotechnology for New Product of Cotton Fabric.

Supervisors: Dr. Emam Abdel-Mopdy Abdel-Rahim

Dr. Mohamed Magdy Rashed Dr. Azza Abdel - Aziz Mahmoud

Department: Agricultural Biochemistry **Approval**: 3/8/2017

ABSTRACT

In the present study zinc oxide (ZnO)nanoparticles which has many unique physical and chemical properties prepared by precipitation method using different concentrations of ZnO (1%, 3% and 5%) also using polyvinyl pyrrolidone(PVP) with different concentration (1% and 3%) as a binder and dyed (reactive dye). These nanoparticles have average size of 37-58 nm. It coated the bleached cellulosic fabric plain weave such as Giza80, Giza90 (100% cotton) and blended fabric (65/35%) with polyester. The results of this study found that the concentration of 3:3 of ZnO nanoparticles and PVP coated fabric was significantly higher than the control for the physical properties such as tensile strength, elongation, color strength (K/S) and evaluate wash fastness also characteristic size of ZnO NPS and the crystallinity of fabric by Fourier transmission infra red (FTIR), Scanning electron microscope (SEM) and X ray diffraction (XRD). The result also showed that the concentration of ZnO nanoparticles increased the crystallinity index also increased ZnO/PVP elevated UV protection in all varities. The highest response was G90 and G80followed by G70 blended with poly-ester. ZnO/PVP increased the antimicrobial activity against E.coli and S. aureus compared with the bleached fabric which killed about 99.8% of the bacterial cells. In conclusion by the present studies, it can be produced textiles had appearance on the surface textiles in dying process, UV protection and antimicrobial activity to use in medicine works.

Key words: Cotton fabric, ZnO nanoparticles, PVP, XRD, Strength, Elongation, FTIR Antimicrobial activity, Reactive dye

CONTENTS

I	Page
INTRODUCTION	. 1
REVIEW OF LITERATURE	5
1. Chemical structure of cotton fibers	
a. Egyptian cotton varieties	10
b. Mechanical and chemical properties of cotton fibers	10
2. Polyester11	
a. Chemical structure of polyester	. 11
b. Characteristics of polyester	. 13
c. Polyester – cotton fabric	13
3. Basic nanotechnology	. 14
4. Importance of nanotechnology	16
5. Methods of fabric treatment with the nanoparticles	17
6.ZnO nanoparticles	
7. Poly vinyl-pyrrolidone (PVP)	
8. Scouring	22
9. Reactivedye	2
10. U.V protection	2
11. Scanning electron microscope	2'
12. Fourier transmission infra red	29
13. Wash fastness	30
14.Antibacterial activity	3
15. X ray	34
MATERIALS AND METHODS	
1. Materials	
a. Cotton fabrics	30
b. Cotton / polyester	36
c. The chemicals	3
2. Methods	
a. Pretreatment process	3
b. Treatment process	3'
3. Measurements and analysis	_
1. Strength (kg/f) and Elongation (%)	3
2. Dye ability measurements	4

3. Fastness properties
4. U.V protection
5. Antimicrobial activity test
6. Scanning electron microscope
7. Fourier transmission infra red.
8. X-ray diffraction measurements
RESULTS AND DISCUSSION
1. Scanning electron microscope
2. Fourier transmission infra red
3. X-ray diffraction analysis
3-1.X-ray (diffraction pattern) cotton sample
4. Mechanical properties: Tensile strength and Elongation
a. Tensile strength
b.Elongation
5. Wash fastness
6. K/S measurement
7. U.V protection
8. Antibacterial activity
a. Agar plate method
b. Shake flask test in nutrient broth
SUMMARY
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Grade to assessing color fastness properties	41
2.	UV protection and classification according to	
	AS/NZS	41
3.	Crystallinity size of ZnO nanoparticle	51
4.	Effect of ZnO nanoparticle with PVP on crystallinity	
•	index (%)	57
5.	Effect of ZnO nanoparticle with PVP on tensile	
	strength (N) of cotton and blended fabrics	59
6.	Effect of ZnO nanoparticle with PVP on elongation	
	(%) of cotton and blended fabrics	61
7.	Effect of ZnO nanoparticle with PVP on color	
	fastness to washing of dyed fabrics	63
8.	Effect of ZnO nanoparticle with PVP on K/S of	
	dying cotton and blended fabric	65
9.	Effect of ZnO nanoparticle with PVP on UV	
	protection of cotton and blended fabrics	68
10.	Effect of ZnO nanoparticle with PVP on zone	
	inhibition of microorganism	72
11.	Effect of ZnO nanoparticle with PVP on zone	
	inhibition of microorganism	75

LIST OF FIGURES

No.	Title	Page
1.	Molecular structure of cellulose	6
2.	Chemical structure of polyester	12
3.	The chemical structure of PVP	21
4.	Correlation between the (a) influence of essential	
	ZnO-NPs parameters on the antibacterial response.	
	(b)different possible mechanisms of ZnO-NPs	
	antibacterial activity, including: ROS formation,	
	Zn ⁺² release, internalization of ZnO-NPs into	
	bacteria, and electrostatic interactions	34
5.	Schematic diagram of PVP/ZnO functionalized	
	cotton	39
6.	Scanning of electron microscope of zinc oxide	
	nanoparticles	45
7.	SEM of control fiber	46
8.	FTIR of bleaching (control) sample G 70 blend with	
	poly-ester	47
9.	FTIR of bleaching (control) sample (G 90)	48
10.	FTIR of bleaching (control) sample (G80)	48
11.	FTIR of ZnO/PVP sample G 70 blend with poly-	
	ester	49
12.	FTIR of ZnO/PVP sample G90	49
13.	FTIR of ZnO/PVP sample G80	50
14.	XRD pattern of ZnO prepared by precipitation	
	method	51
15.	XRD spectra diagram of bleaching (control) sample	
	G 80	52
16.	XRD spectra diagram of treated G80 with ZnO	
	/PVP nanoparticle (3:3)	53
17.	XRD spectra diagram of bleaching (control) sample	
	G70 blended with poly-ester	54

18.	XRD spectra diagram of treated G70 blended with	
	poly-esterwithZnO /PVP nanoparticle (3:3)	54
19.	XRD spectra diagram of bleaching (control) sample	
	G 90	55
20.	XRD spectra diagram of treated G90 with ZnO	
	/PVP nanoparticle (3:3)	56
21.	Effect of ZnO/PVP on crystalinty index with	
	different concentration	57
22.	Effect of ZnO nanoparticle with PVP on tensile	
	strength (N) of cotton and blended fabric	59
23.	Effect of ZnO nanoparticle with PVP on elongation	
	(%) of cotton and blended fabrics	61
24.	Effect of ZnO nanoparticle with PVP on K/S of	
	dying cotton and blended fabric	65
25.	Effect of ZnO nanoparticle with PVP on UV	
	protection of cotton and blended fabrics	69
26.	Effect of ZnO /PVP ratio on zone inhibition of	
20.	microorganism.G70 blended with poly ester	73
27.	Effect of ZnO /PVP on zone inhibition of	, 5
_,.	microorganism G80	73
28.	Effect of ZnO /PVP on zone inhibition of	, ,
	microorganism G90	74
29.	Effect of ZnO/PVP nanoparticle on reduction(%)	, .
	of E.coli	76
30.	Effect of ZnO/PVP nanoparticle on reduction (%)	, 0
50.	of S.aureus	76
31.	Mechanism of ZnO nanoparticle on bacteria	76
$\sigma_{\mathbf{I}}$.	1.10011million of Ziro manoparticle on bacteria	, 0

ACKNOWLEDGEMENT

First of all and above, I thank and pray to Allah for explicitly know and Uncomtable reasons. My deep appreciation and sincere thanks to **Prof. Dr. Emam Abdel Mobdy Abdel – Rahim and Prof.Dr.Mohamed Magdy Rashed** Professors of Biochemistry Faculty of Agriculture Cairo University for Sponsoring this thesis, continuous encouragement and guidance.

Hearty, I would like to express my grateful gratitude to **Dr.**Azza Abdel Aziz Mahmud Head Researcher Biochemistry, Cotton

Res. Inst., Agric. Res. Center for her generous guidance and

valuable discussion during the scope of this work

The author would also wish to thank all the staff members and colleagues of the chemistry Department Cotton Research Institute Agriculture Research Center and Biochemistry Department of Faculty of Agriculture Cairo University and Patriot Egypt.

Finally, I can't forget the complete assistance and faithful encouragement of my parent and my husband during the preparation of this thesis.

LIST OF ABBREVIATIONS

DP Degree of polymerization
C.R.I Cotton research institute
PET Polyethylene Tera phthalate
PVP Poly vinyl pyrrolidone

NPs Nanoparticles

FDA Food and Drug Administration

UV Ultraviolet

UPF Ultraviolet protection factor
SEM Scanning Electron microscope
TEM Transmission Electron Microscopy
FTIR Fourier Transmission Infra Red

XRD X- Ray Diffraction

WAXD Wide angle X-ray diffraction

Owf On weight of fabric

NIS National Institute for Standards
D The diameter of the crystalline

 Λ The wave length of CuKαline (1.5406 A)

B Full width at half maximum (FWHM) in radian

 θ Bragg angle

ROS Reactive oxygen species

R Decimal fraction of reflectance of dyed fabrics

K Absorption coefficient S Scattering coefficient

TUVA Transmitted Ultraviolet A rays (320- 400 nm)
TUVB Transmitted Ultraviolet B rays (280 - 320 nm)

استخدام النانو تكنولوجي لإنتاج اقمشه قطنية ذات مواصفات جديدة

رسالة مقدمه من

سحر امام محمد امام سعودى بكالوريوس في العلوم الزراعية (كيمياء حيوية زراعية)، كلية الزراعة ، جامعة القاهرة 2010

الحصول على درجة الماجستير في العلوم الزراعية (كيمياء حيوية زراعيه)

قسم الكيمياء الحيوية الزراعية كلية الزراعة جامعة القاهرة

مصر

2017

استخدام النانو تكنولوجي لإنتاج اقمشه قطنية ذات مواصفات جديدة

رساله ماجستير فى العلوم الزراعية (كيمياء حيويه زراعيه)

مقدمه من

سحر امام محمد امام سعودى بكالوريوس العلوم الزراعية (كيمياء حيوية زراعية) كلية الزراعة ، جامعة القاهرة ، 2010

لجنة الإشراف

الدكتور: امام عبد المبدئ عبد الرحيم أستاذ الكيمياء الحيوية المتفرغ _ كلية الزراعة _ جامعة القاهرة

الدكتور :محمد مجدى راشد أستاذ الكيمياء الحيوية المتفرغ ، كلية الزراعة ، جامعة القاهرة

الدكتور: عزه عبد العزيز محمود الحيرة الجيزة الكيمياء، معهد بحوث القطن، مركز البحوث الزراعية، الجيزة

استخدام النانو تكنولوجي لإنتاج اقمشه قطنية ذات مواصفات جديدة

رساله ماجستير فى العلوم الزراعية (كيمياء حيويه)

مقدمه من

سحر امام محمد امام سعودى بكالوريوس العلوم الزراعية (كيمياء حيوية زراعية)، كلية الزراعة ،جامعة القاهرة، 2010

لجنة الحكم
الدكتور: صلاح مصطفى محمود سعد
الدكتور: ناديه محمد عبد المعين أستاذ الكيمياء الحيوية، كلية الزراعة، جامعة القاهرة
الدكتور: محمد مجدى راشد
الدكتور: امام عبد المبدئ عبد الرحيم أستاذ الكيمياء الحيوية ، كلية الزراعة ، جامعة القاهره

التاريخ / 8 / 2017

INTRODUCTION

Cotton is a natural fiber that comes from the seedpod of cotton plant used to make many fabric types at every price point, cotton can be knit or woven ,the common weaver for cotton are the plain and twill weave.

Cotton fabric is popular because it's easy to care and comfortable yearround in hot, humid weather, cotton breathes as the body perspires ,cotton fibers absorb the moisture and release it on the surface of the fabrics so it evaporates, in cold weather the fabric remains dry and the fiber retain body heat.

Nanotechnology has been involved in textile performances improvement or new functions for several years. In nanotechnology, the primary issues for researches is to examine the nano scale material so a variety of microscope approaches have been developed, the most widely used nano coating process is summarized and the application of microscope analysis including electron microscopy, scanning probe microscopy (SPM) and scanning electron microscope (SEM), transmission electron microscope (TEM).

Condition of cellulose textile manufacturing and operation presuppose contact with many issues such as microorganism, strength reduction, loss of aesthetic characteristic and performance properties. Therefore, zinc oxide (ZnO) has attracted considerable attention of many researchers especially for its low cost, easy process ability, low

weight, high quality surfaces and easy fabrication of thick and thin samples.