

Tanta University
Faculty of Engineering
Mechanical Power Eng. Dept.

Investigation of Rotating Disk Skimmer Performance for Oil Spills Recovery

A Thesis

Submitted in Partial Fulfillment of the Requirement of Master of Science Degree

In

Mechanical Engineering – (Energy Engineering)

By

Eng. Ahmed Moustafa Mohamed Khaira

B.Sc. in Mechanical Power Engineering

Supervisors

Prof. Dr. Aly M. El-Zahaby

Mechanical Power Eng. Dept. Faculty of Engineering Tanta University Prof. Dr. Abd El-Naby E. Kabeel

Mechanical Power Eng. Dept. Faculty of Engineering Tanta University

Dr. Ayman I. Bakry

Mechanical Power Eng. Dept. Faculty of Engineering Tanta University

2008

Tanta University Faculty of Engineering Mechanical Power Eng. Dept.

Researcher Name: Ahmed Moustafa Mohamed Khaira

Thesis Title: Investigation of Rotating Disk Skimmer

Performance for Oil Spills Recovery

Degree : Master of Science in Mechanical Engineering-

(Energy Engineering)

Supervisors

No.	Name	Position	Signature
	Prof. Dr.	Mechanical Power	
		Engineering	
1	Aly M. El-Zahaby	Department	
		Faculty of Engineering	
		Tanta University	
	Prof. Dr.	Mechanical Power	
		Engineering	
2	Abd El-Naby E.	Department	
	Kabeel	Faculty of Engineering	
		Tanta University	
	Dr.	Mechanical Power	
		Engineering	
3	Ayman I. Bakry	Department	
		Faculty of Engineering	
		Tanta University	

Tanta University

Faculty of Engineering

Mechanical Power Eng. Dept

Researcher Name: Ahmed Moustafa Mohamed Khaira

Thesis Title: Investigation of Rotating Disk Skimmer

Performance for Oil Spills Recovery

Degree : Master of Science in Mechanical Engineering-

(Energy Engineering)

Approved by

No.	Name	Position	Signature
1	Prof. Dr. Kamal Abd-Elazez. Ibrahem	Vice dean of Faculty of Engineering for Environment & Community Affairs Faculty of Engineering Minoufiya University	
2	Prof. Dr. Sadek Zakaria Kassab	Mechanical Engineering Department Faculty of Engineering Alexandria University	
3	Prof. Dr. Aly Mohamed El- Zahaby	Mechanical Power Engineering Department Faculty of Engineering Tanta University	
4	Prof. Dr. Abd-El-Naby Elbayomy. Kabeel	Mechanical Power Engineering Department Faculty of Engineering Tanta University	

2008

جامعة طنطا كلية الهندسة قسم هندسة القوى الميكانيكية

"بحث أداء القرص الكاشط الدوار في إستعادة بقع الزيت"

رسالة مقدمة لإستكمال متطلبات الحصول على درجة الماجستير في الهندسة الميكانيكية (هندسة الطاقة) مقدمة من

المهندس / أحمد مصطفى محمد خيرة

المعيد بقسم هندسة القوى الميكانيكية كلية الهندسة - جامعة طنطا

تحت إشراف

أ.د/ عبدالنبي البيومي قابيل

أستاذ بقسم هندسة القوى الميكانيكية كلية الهندسة- أ.د/ على محمد الذهبي

أستاذ بقسم هندسة الق*وى* الميكانيكية كلية الهندسة-

د./ أيمن ابراهيم بكرى

مدرس بقسم هندسة القوى الميكانيكية كالية الهندسة_

Y . . A

جامعة طنطا كلية الهندسة قسم هندسة القوى الميكانيكية

عنوان الرسالة: بحث أداء القرص الكاشط الدوار في إستعادة بقع الزيت اسم الباحث: أحمد مصطفى محمد خيرة الدرجة: درجة الماجستير في الهندسة الميكانيكية ـ (هندسة الطاقة)

تحت إشراف

التوقيع	الوظيفة	الاسم	م
	أستاذ متفرغ بقسم هندسة القوى الميكانيكية	أ.د/ على محمد الذهبي	١
	كلية الهندسة_		
	أستاذ بقسم هندسة القوى الميكانيكية	أ.د/ عبدالنبي البيومي قابيل	۲
	كلية الهندسة. جامعة طنطا		
	مدرس بقسم هندسة القوى الميكانيكية	د/ أيمن ابراهيم بكرى	٣
	كلية الهندسة جامعة طنطا		

جامعة طنطا كلية الهندسة قسم هندسة القوى الميكانيكية

عنوان الرسالة: بحث أداء القرص الكاشط الدوار في إستعادة بقع الزيت اسم الباحث: أحمد مصطفى محمد خيرة

الدرجة: درجة الماجستير في الهندسة الميكانيكية - (هندسة الطاقة)

لجنة الحكم والمناقشة

التوقيع	الوظيفة	الاسم	م
	وكيل الكلية لشئون خدمة المجتمع و تنمية البيئة كلية الهندسة بشبين الكوم- المنوفية	أد/ كمال عبد العزيز ابراهيم	1
	أستاذ بقسم الهندسة الميكانيكية كلية الهندسة- جامعة الإسكندرية	أ.د/ صادق زكريا كساب	2
	أستاذ بقسم هندسة القوى الميكانيكية كلية الهندسة_	أ.د/ على محمد الذهبي	3
	أستاذ بقسم هندسة القوى الميكانيكية كلية الهندسة_	أ.د/ عبدالنبي البيومي قابيل	4

ABSTRACT

Recently, rotating disk skimmers have been introduced as a common and an effective oleophilic (adhesion) means for removing oil spills either from open seas or from shallow streaks.

Thus, the present study examines experimentally the performance of rotating disk skimmer due to their great importance in fighting oil spills that have many drawbacks on many faces such as hazardous impact on marine life, coasts, tourism, economy, irrigation, navigation, drinking water etc. Extensive parametric tests have been carried out over a wide range of disk design and operating parameters to investigate their effects on the disk skimmer performance which in turn function in oil recovery rate and efficiency to obtain the optimum design and operating parameters. These parameters include the disk diameter and thickness, disk rotational speed, oil film thickness, oil type, disk center height above the oil-water interface, disk material and disk inclination angle. Tests are performed on a device designed and manufactured to simulate oil spill. Generally, the results show the high effectiveness of disk skimmers as an outstanding device for removing oil spills in static sea conditions.

In addition, an optical observation study has been performed to help in the interpretation and illustration of the various behaviors and trends appeared on the resulted figures encountered in the parametric study, wherever a considerable amount of consistency and matching between the two are recognized. Generally, the results revealed reliable good agreement with that obtained previously by other investigators.

CONTENTS

Subje	ect		Page
ACKN	NOWLED	GMENTS	I
ABST	RACT		II
SUM	MARY		III
CONT	ΓENTS		IX
LIST	OF FIGUI	RES	XIII
LIST	OF TABL	ES	XXIII
NOM	ENCLAT	URE	XXV
CHA	PTER (I):	INTRODUCTION AND LITERATURE	1
REVI	EW		
I-1	INTRO	DUCTION ABOUT OIL SPILL	1
I-2	SOURC	CES OF OIL POLLUTION	1
I-3	BEHAV	VIOR OF SPILLED OIL (THE FATE OF OIL	3
	SPILL .	AT SEA)	
	I-3.1		3
	I-3.2	1	4
I-4		TS OF THE OIL SPILLS ON THE	5
		ONMENT	
I-5		ENCE ON OIL SPILL EFFECTS DUE TO TIME	7
	OF YE		
I-6		ENT ASSESSMENT AND MONITORING	7
I-7		TILL STATISTICS	8
	I-7.1		8
	I-7.2	Causes of Spills	8
I-8		MATION GATHERING AND RISK	10
		SMENT	
	I-8.1	Properties of oil	11
	I-8.2		12
	I-8.3		14
	I-8.4	Computer trajectory modeling	14
T 0	I-8.5	Sensitivity mapping of the environment at risk	14
I-9		NGENCY PLAN	15
I-10		RENT TECHNIQUES TO PREVENT OIL	16
	POLLU		1.0
	I-10.1	Chemical dispersants	16
	I-10.2	\mathcal{C}	17
T 11	I-10.3	Mechanical method	18
I-11	BOOM		24
I-12 I-13		ATURE REVIEW RESENT STUDY	27 39
1-13		NESTERNI STITLIT	19

I-14		NT WORK OBJECTIVES	39
	` ′	: THE EXPERIMENTAL SET UP AND	41
	CEDURE	DIICTION	41
II-1		DUCTION	41
II-2		AAL DESCRIBTION OF THE TEST-RIG	41
	II-2.1	Main Tank	43
	II-2.2		43
	II-2.3	1	44
	II-2.4	1 1 2	44
	II-2.5		44
	II-2.6	\mathcal{E}	44
	II-2.7	•	45
	II-2.8		45
	II-2.9	Compensating oil vessel	46
	II-2.10	ε	47
	II-2.11	ε	47
	II-2.12	\mathcal{C}	48
	II-2.13	1	48
		Wood partition	48
	II-2.15	Collecting and Calibrated Vessels	48
	II-2.16		49
II-3		JRING DEVICES	49
	II.3.1		49
	II.3.2	1	50
	II.3.3	Digital balance	50
	II.3.4	Density and viscosity measuring devices	50
	II.3.5		51
	II.3.6	1	51
	II.3.7	5	51
	II-3.8	Digital clamp meter	51
II-4	EXPER	IMENTAL PROCEDURES	51
CHAI	PTER (III): EXPERIMENTAL RESULTS AND	73
DISC	USSION		
III-1	INTRO	DUCTION	73
III-2	EFFEC'	Γ OF DISK ROTATIONAL SPEED ON THE OIL	73
	RECOV	VERY RATE (ORR)	
III-3	EFFEC	Γ OF DISK DIAMETER ON THE OIL	74
		VERY RATE (ORR)	
III-4	EFFEC	Γ OF DISK INCLINATION ANGLE ON THE	75
	OIL RE	COVERY RATE (ORR)	
III-5	EFFEC	Γ OF OIL VISCOSITY ON THE OIL	79

	RECOVERY RATE (ORR)	
III-6	EFFECT OF SPILLED OIL FILM THICKNESS ON THE	80
111 0	OIL RECOVERY RATE (ORR)	00
III-7	EFFECT OF DISK CENTER HEIGHT ABOVE OIL-	81
	WATER INTERFACE ON (ORR)	
III-8	EFFECT OF DISK THICKNESS ON THE OIL	82
	RECOVERY RATE (ORR)	
III-9	EFFECT OF DISK MATERIAL ON THE OIL	83
	RECOVERY RATE (ORR)	
III-10	EFFECT OF DISK ROTATIONAL SPEED ON THE OIL	85
	RECOVERY EFFICIENCY	
III-11	EFFECT OF DISK DIAMETER ON THE OIL	85
	RECOVERY EFFICIENCY (ORE)	
III-12	EFFECT OF DISK INCLINATION ANGLE ON THE	86
	OIL RECOVERY EFFICIENCY (ORE)	
III-13	EFFECT OF OIL VISCOSITY ON THE OIL	87
	RECOVERY EFFICIENCY (ORE)	0.0
III-14	EFFECT OF SPILLED OIL FILM THICKNESS ON THE	88
III 1 <i>5</i>	OIL RECOVERY EFFICIENCY (ORE)	00
III-15	EFFECT OF DISK CENTER HEIGHT ABOVE OIL-	88
	WATER INTERFACE ON THE OIL RECOVERY	
III-16	EFFICIENCY (ORE)	89
111-10	EFFECT OF DISK MATERIAL ON THE OIL RECOVERY EFFICIENCY (ORE)	89
III-17	THE REQUIRED DRIVING POWER FOR DISK	89
111-1/	SKIMMER MOTOR	09
III_18	QUALITATIVE OBSERVATIONS	90
III-19		93
	TER (IV): CONCLUSIONS AND SUGGESTIONS FOR	173
	RE WORK	110
	CONCLUSIONS	173
IV.2		175
	RENCES	177
	NDICES	183
	NDIX (A) LIST OF OIL SPILLS	183
	NDIX (B) UNCERTAINTY ANALYSIS	187

المستخلص العربي

في الأونة الأخيرة، استخدم كاشط الزيت القرصى الدوار كواحد من أفضل الطرق وأكثرها فاعلية لكشط و ازالة بقع الزيت سواء مِنْ البحار المفتوحة أو مِنْ الخلجان الضحلة عن طريق القابلية للالتصاق بين سطح القرص و الزيت (oleophilic). و في هذة الدراسة تم بحث أداء كاشط الزيت القرصى الدوار عمليا نظرا الأهميته الكبيرةِ في مكافحة بقع الزيت التي لهأ العديد مِنْ الأثار السلبية الخطرةِ على الحياة البحرية والسواحل و السياحة والإقتصاد والرَيّ والملاحة و مياه الشرب الخ. وقد أجريت دراسة معملية بارامترية على العديد من متغيرات التصميم و ظروف التشغيل للقرص الكاشط للزيت و ذلك لدراسة تأثير هذة العوامل على أداء القرص الذي بدورة دالة في معدل و كفاءة الاسترجاع الزيت و ذلك بهدف الوصول الي ظروف التصميم و التشغيل المثالية. وهذة المتغيرات تتضمن قطر, سمك, سرعة الدوران للقرص، سمك طبقة الزيت، نوع الزيت، إرتفاع مركز القرص فوق السطح الفاصل بين الزيت و الماء، نوع مادة القرص وكذلك زاوية ميل القرص. و تم اجراء الإختبارات على جهاز معملى تم تصميمة وتنفيذة لعمل محاكاة لبقعة الزيت. عموما، أوضحت النتائج أن القرص الكاشط الدوار أداة فعالة لكشط واسترجاع الزيت في حالة المياة الساكنة. بالإضافة لذلك فقد تمت دراسة بصرية للمساعدة في فهم و تفسير السلوكيات والإتجاهات المتنوعة لطبقة الزيت و التي قد ظهرت على نتائج الدراسة البارامترية، حيث وجد الأثنان على قدر كبير من الأتفاق. عموما، لقد أوضحت النتائج اتفاق كبير مع نتائج الأبحاث السابقة في هذا المجال.

CHAPTER (I)

INTRODUCTION AND LITERATURE REVIEW

CHAPTER (II)

THE EXPERIMENTAL SET UP AND PROCEDURE

CHAPTER (III) EXPERIMENTAL RESULTS AND DISCUSSION

CHAPTER (IV)

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK