بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠ المنافلات ال

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

Faculty of Agric. (Saba-Bacha)
Soil and Agric. Chemistry Dept.,

A COMPARISON OF SOME FERTIGATION SYSTEMS FOR SOME VEGETABLE CROPS PRODUCTION IN THE NORTH WESTERN COAST OF EGYPT

A THESIS

Presented to the Graduate School
Faculty of Agriculture
(Saba-Bacha)
Alexandria University

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF AGRICULTURAL SCIENCE

IN

(SOIL AND WATER)

BY

HANY MOHAMED SHAWKY EL-SAYED EL-BELTAGY

71

Alexandria University Faculty of Agric. (Saba-Bacha) Soil and Agric. chemistry Dept.,

A COMPARISON OF SOME FERTIGATION SYSTEMS FOR SOME VEGETABLE CROPS PRODUCTION IN THE NORTH WESTERN COAST OF EGYPT.

Presented by

HANY MOHAMED SHAWKY EL-SAYED EL-BELTAGY

For the degree of

MASTER OF AGRICULTURAL SCIENCES (Soil & Water)

Examiner's Committee:

Prof. Dr. S. A. Gaheen
Prof. of Soil & Water, Fac. of Agriculture
(Kafr El-Sheikh), Tanta University.

Prof. Dr. M.G. Nasseem
Prof. and Head of Soil and Agric. Chemistry Dept.,
Fac. of Agric. Saba Bacha, Alex. Univ.

Prof. Dr. H.A. Zeid
Prof. of Soil and Water,
Fac. of Agric. Saba Bacha, Alex. Univ.

Dr. G. Abdel-Nasser M. Khalil Associate Prof. of Soil and Water, Fac. of Agric. Saba Bacha, Alex. Univ. **Approved**

S.A. Gaheen

H. D. Zreel

Abdelmasser

ADVISOR'S COMMITTEE

Prof. Dr. Maher G. NASSEEM

Prof. and Head of Soil and Agric. Chemistry Dept., Faculty of Agriculture, Saba Basha, Alexandria University

Dr. Gamal Abdel Nasser M. KHALIL

Associate Prof., Soil and Agric. Chemistry Dept., Faculty of Agriculture, Saba Basha, Alexandria University

Dr. Gamal A.A.A. SHARAF

Lecturer, Soil and Agric. Chemistry Dept., Faculty of Agriculture, Saba Basha, Alexandria University

CONTENTS

	Page
ACKNOWLEDGEMENT	
INTRODUCTION	1
REVIEW OF LITERATURE	3
General	3
1. Subsurface and trickle (drip) irrigation systems	4
2. Potential Benefits	4
2.1. Water savings	6
2.2. Fertilizer savings	6
3. Subsurface water application methods	7
4. Suitability of subsurface irrigation	9
5. Clay Jar or pitcher irrigation system	12
6. Fertigation (or chemigation) as a method for fertilizers applica-	
tions	23
MATERIALS AND METHODS	30
Part I. Preliminary experiments	30
1. Clay Jars	30
2. The tested soil	30
3. Determination of filtration characteristics of soil	30
4. Determination of the saturated hydraulic conductivity (Ks)	35
5. Determination of clay Jar filtration into air in relation to	
hydrostatic head	37
6. Determination of the permeability of the clay Jar material	40
7. Determination of the clay Jar water flux into soil	42
Part II. Field experiments	42

1. Liquid fertilizer supply tank (Feeder tank)	43	÷
2. Head level control tank	43	
3. Nutrient distribution network	43	
4. Clay-Jar installation	46	
A. Tomato experiment	50	
B. Cantaloupe experiment	55	
C. Soil and plant sampling.	57	
D. Growth and yield characteristics.	62	
1. Foliage fresh weight, g/plant	62	
2. Root fresh weight, g/plant	62	
3. Root length, cm.	62	
4. Fruit yield, kg/plot	62	
5. Fruit yield per plant, kg/plant	63	
6. Fruit mean weight, g/fruit	63	
E. Plant water relations	63	
1. Leaf water content, %	63	
2. Relative water content, %	63	
3. Plant water consumptive use	64	
4. Water-use efficiency	64	
F. Irrigation Scheduling	65	
G. Soil and plant analysis	67	
1. Soil analysis	67	
2. Plant Analysis	70	
H. Experimental Design	71	
I. Statistical analysis	71	
RESULTS AND DISCUSSION.	72	
Part I. Preliminary experiments	72	

I. Filtration characteristics of soil	72
II. Saturated hydraulic conductivity of soil (ks)	74
III. Determining the permeability of the clay Jar material	77
IV. Filtration characteristics of clay Jars into air in relation to	
hydrostatic head	78
V. Filtration characteristics of clay Jars into soil in relation to	
hydrostatic head	78
Part II. Field experiments	119
I. Tomato experiment	119
1. Growth and yield	119
2. Leaf elemental composition	126
3. Nutrient-use efficiency (NUE)	126
4. Soil chemical analysis	129
5. Available elements	132
6. Plant water relations	132
II. Cantaloupe experiment	136
1. Growth and yield	136
2. Leaf elemental composition	139
3. Nutrient-use efficiency (NUE)	145
4. Soil chemical analysis	145
5. Available elements	148
6. Plant water relations	152
SUMMARY AND CONCLUSION	160
LITERATURE CITED	170
ARABAIC SUMMARY	

÷

X

.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to **Prof. Dr. M.G. Nasseem**, Prof. of Soil Science and the Chairman of Soil and Agricultural Chemistry Dept., Faculty of Agriculture, Saba Bacha, Alexandria University for suggesting this research problem, his supervision, guidance, encouragement and his assistance in revising the thesis.

I am deeply grateful and greatly indebted to **Dr. G. Abdel-Nasser**, Associate Prof. of Soil Physics and Water Management, Soil and Agricultural Chemistry Dept., Faculty of Agriculture, Saba Bacha, Alexandria University for his keen supervision, great help during the experimentation, value guidance, kind advices, encouragement, continued assistance in writing, preparing and revising the thesis.

X-

Also, I wish to express my thanks to **Dr. G.A. Sharaf**, Associate Prof. of Agricultural Engineering, Soil and Agricultural Chemistry Dept., Faculty of Agriculture, Saba Bacha, Alexandria University for his supervision and assistance during this work.

I wish to express my deep thanks to Alexandria Agricultural Company (Talaat Moustafa Group) for providing many facilities and assistance during the field experiments.

Also, particular and heartful thanks to Eng. Hany Talaat, the president of Administrative Council, Alexandria Agricultural Company for his continued assistance, encouragement to continue my research study and complete this thesis.

The author is also indebted to all his colleagues in the Dept. of Soil and Agricultural Chemistry and Alexandria Agricultural Company for their continued assistance and encouragement during this work.

INTRODUCTION

INTRODUCTION

At the new reclaimed areas in Egypt, there is a critical balance between water resources and water consumption, thus water saving is becoming a decisive factor for agriculture expansion. So, irrigation should be manipulated to maximize crop production per unit of applied water (water-use efficiency). In such areas, demands for irrigation scheduling and determining the crop water requirements impose the need to water management.

1

Irrigation and fertilization play an important role in food production for the expanding population. The control of soil nutrients and water content in root zone depth provides both enough water and nutrients as aim of the water and nutrients management. A continuous improvement in water and nutrients application methods with efficient use, is essential to keep high food production in balance with the increasing demand.

Fertigation (application of fertilizer nutrients with irrigation water) as an appropriate technique for efficient use of water and fertilizer is being practiced in greenhouse crops and also in newly reclaimed soils with drip irrigation.

The clay Jar or pitcher irrigation technique was used over two thousand years ago in China, after that, it was used in many areas (such as India, Brazil, Japan and ancient Egypt), but it was a simple system. This system is considered a method of subsurface irrigation.