Purification and Characterization of Peroxidase from *Euphorbia* tirucalli Latex

A Thesis Submitted By:

Rasha Azouz Mohamed Azouz

(B.Sc. in Biochemistry, 2005)

In Partial Fulfillment of the Degree of Master of Science in Biochemistry

Supervised By:

Prof. Dr. Ahmed M. Hassan Salem

Professor of Biochemistry Faculty of Science Ain Shams University Prof. Dr. Afaf S. Fahmy

Professor of Biochemistry Molecular Biology Department National Research Center

Dr. Mahmoud M. Said Abd El-Hamid

Lecturer of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2011

تنقية ودراسة خواص البيروكسيديز من العصارة اللبنية لنبات الإيوفوربيا تريكائي

رسالة مقدمة من

رشا عزوز محمد عزوز

(بكالوريوس الكيمياء الحيوية ٢٠٠٥)

كجزء متتم للحصول على درجة الماجستير في العلوم (الكيمياء الحيوية)

تحت إشراف

أ.د/ عفاف سعد الدين فهمي

أستاذ الكيمياء الحيوية قسم البيولوجيا الجزيئية المركز القومي للبحوث

أ.د/ أحمد محمد حسن سالم

أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس

د محمود محمد سعید عبدالحمید

مدرس الكيمياء الحيوية كلية العلوم جامعة عين شمس

قسم الكيمياء الحيوية كلية العلوم جامعة عين شمس 2011

CONTENTS

	Page
List of Abbreviations	iii
List of Figures	vi
List of Tables	viii
Introduction	1
Aim of the Work	4
Review of Literature	5
Materials and Methods	35
Plant materials	35
Chemicals	35
Buffers	36
Methods	36
Peroxidase assay	36
Protein determination	37
Determination of protein by the method of Bradford (1976)	37
Purification of Euphorbia latex peroxidase (ELP)	40
Collection and preparation of crude extract	40
Benzene fractionation	40
Gel filtration on a Sephacryl S-200 column	41
CM-Sepharose column chromatography	41
Molecular weight determination	42
By gel filtration	42
By sodium dodecyl sulfate-polyacrylamide electrophoresis	44
Characterization of E. tirucalli latex peroxidase	50
Optimum pH	50
Substrate specificity	50
Michaelis constant	50

CONTENTS (Cont.)

	Effect of temperature on ELP	51
	Effect of Ca^{2+} concentration on <i>E. tirucalli</i> latex peroxidase activity	53
	The effect of CaCl ₂ addition at the concentration of 5 mM on <i>E. tirucalli</i> latex Peroxidase activity before and after incubation at 70 °C	53
	Effect of metal cations	54
	Effect of different compounds on <i>E. tirucalli</i> latex peroxidase activity	54
Results	•	56
Discussion		86
Summary		106
References	5	110

List of Abbreviations

AAP	Aminoantipyrene
ABTS	2,2'-Azino-di[3-ethyl-benzthiazoline-6-sulphonic acid]
APS	Ammonium persulfate
APx	Ascorbate peroxidase
A. sativum	Allium sativum
BSA	Bovine serum albumin
CBB G-250	Coomassie brilliant blue G-250
CBB R-250	Coomassie brilliant blue R-250
CcP	Cytochrome c peroxidase
cDNAs	Complementary deoxyribonucleic acid
C. jambhiri	Citrus jambhiri
CM	Carboxymethyl
Da	Dalton
DEAE	Diethylaminoethyl
DOPA	3,4-Dihydroxyphenylalanine
DTNB	5,5'-Dithiobis-(2-nitrobenzoic acid)
DTT	Dithiothreitol
E.C.	A classification of enzymes according to the Enzyme Commission of the International Union of Biochemistry and Molecular Biology
E. characias	Euphorbia characias
EDTA	Ethylenediamine tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay

List of Abbreviations (Cont.)

ELP	Euphorbia latex peroxidase
E. nyikae	Euphorbia nyikae
E. tirucalli	Euphorbia tirucalli
FPLC	Fast protein liquid chromatography
HIV	Human immunodeficiency virus
HRP	Horseradish peroxidase
IAA	Iodoacetic acid
i.d.	Inner diameter
IgG	Immunoglobulin G
KDa	Killodalton
K _m	Michaelis constant
Mb	Megabases
NADPH	Nicotinamide adenine dinucleotide phosphate
OPD	O-Phenylene diamine
PMSF	Phenylmethylsulfonyl fluoride
PNP	Peanut peroxidase
POD	Peroxidase
Rf	Electrophoretic mobilities
S. melongena	Solanum melongena
SDS-PAGE	Sodium dodecyl sulfate - polyacrylamide gel
	electrophoresis
Spp.	Species

List of Abbreviations (Cont.)

TEMED	N, N, Ń, Ń-Tetramethethylenediamine
TMB	3,3',5,5' Tetramethylbenzidine
TP	Turnip peroxidase

List of Figures

Figure	Title	Page
(2.1)	E. tirucalli tree	6
(2.2)	Structure of the calcium-binding sites in ELP	13
(2.3)	Ribbon diagram of peanut peroxidase (PNP)	14
	with helices labeled as a model for class III	
	PODs	
(2.4)	Catalytic mechanism of class III plant PODs	16
(3.1)	A standard curve of Bovine serum albumin	42
(3.2)	Calibration curve for molecular weight	43
	determination by gel filtration on Sephacryl	
	S-200	
(3.3)	Calibration curve for molecular weight	49
	determination by SDS polyacrylamide gel	
	electrophoresis	
(4.1)	Gel filtration of <i>E. tirucalli</i> latex aqueous	57
	layer dialyzate on a Sephacryl S-200 column	
(4.2)	A typical elution profile of a Sephaceyl S-200	58
	E. tirucalli latex peroxidase on a CM-	
	Sepharose column	
(4.3)	Molecular weight value for E. tirucalli latex	59
	peroxidase as calculated from the calibration	
	curve of Sephacryl S-200 column	
(4.4)	SDS-PAGE for <i>E.tirucalli</i> latex purified	61
	peroxidase	
(4.5)	Molecular weight value for E. tirucalli latex	62
	peroxidase as calculated from the calibration	
	curve of SDS-PAGE	

List of Figures (Cont.)

Figure	Title	Page
(4.6)	Optimum pH of <i>E. tirucalli</i> latex peroxidase	63
(4.7)	Lineweaver-Burk plot relating ELP reaction	66
	velocity to H ₂ O ₂ concentration	
(4.8)	Lineweaver-Burk plot relating ELP reaction	67
	velocity to ABTS concentration	
(4.9)	Lineweaver-Burk plot relating ELP reaction	68
	velocity to guaiacol concentration	
(4.10)	Lineweaver-Burk plot relating ELP reaction	69
	velocity to AAP concentration	
(4.11)	Lineweaver-Burk plot relating ELP reaction	70
	velocity to OPD concentration	
(4.12)	Temperature optimum of E. tirucalli latex	71
	peroxidase	
(4.13)	Effect of temperature on thermal stability of	72
	E. tirucalli latex peroxidase	
(4.14)	Effect of temperature and incubation time on	75
	thermal stability of <i>E. tirucalli</i> latex	
	peroxidase	
(4.15)	Effect of temperature and incubation time on	76
	thermal stability of <i>E. tirucalli</i> latex	
	peroxidase in presence of 1mM CaCl ₂	
(4.16)	Effect of temperature and incubation time on	77
	thermal stability of <i>E. tirucalli</i> latex	
	peroxidase in presence of 5mM CaCl ₂	
(4.17)	Percent increase in E. tirucalli latex	78
	peroxidase at different concentrations of Ca ²	

List of Tables

Table	Title	Page
(4.1)	Purification scheme of peroxidase from	56
	Euphorbia tirucalli latex.	
(4.2)	Relative activities of ELP toward different	64
	substrates.	
(4.3)	The effect of 5 mM $CaCl_2$ addition on E .	79
	tirucalli latex peroxidase activity before and	
	after incubation of at 70°C	
(4.4)	Effect of metal cations on E. tirucalli latex	82
	peroxidase activity.	
(4.5)	Effect of different compounds on ELP	83
	activity	

Purification and Characterization of Peroxidase from Euphorbia tirucalli Latex

Submitted by: Rasha Azouz Mohamed Azouz

Abstract

A cationic peroxidase from Euphorbia tirucalli latex (ELP) has been purified to homogeneity using chromatography on a Sephacryl S-200 and carboxymethyl-Sepharose columns. The Cationic peroxidase ELP is proved to be pure on SDS -PAGE, and its molecular weight was 44 kDa. A study of substrate specificity revealed the affinity of ELP to oxidize some phenolic substrates in the order of ABTS > guaiacol > ophenylenediamine > aminoantipyrene, while ELP had no affinity towards ascorbic acid and o-dianisidine. The K_m of ELP for hydrolysis of H₂O₂ was 15 mM. The K_m values of electron donor substrates were also determined. The enzyme had pH and temperature optima at pH 7.0 and a temperature of 40 °C, respectively. ELP was stable at 10 - 60 °C and unstable above 60 °C. The thermal inactivation of ELP was characterized by a rapid decline followed by a relative stability in activity on exposure to heat. However, the thermal inactivation of ELP was almost changed in the presence of Ca²⁺ ions. Most of the different examined compounds and metal ions had partial inhibitory effects on ELP except for Ca^{2+} which had a vital role in activation of the enzyme and Mg^{2+} which had a slight activation effect.

Keywords: Calcium ions; *Euphorbia tirucalli*; Latex; Peroxidase; Thermal inactivation.

Introduction

Euphorbia tirucalli is a species of the plant kingdom belonging to the Euphorbiaceae family. The Euphorbiaceae is among the larger families of flowering plants with 300 genera and 8000 species. This family is one of the most diverse families that range from herb, shrub and tall tree. The succulent species is characterized by the presence of irritant white milky latex. The great majority of this family is tropical or subtropical, but even in temperate North America there are 27 genera with over 100 native or naturalized species. (Willis, 1973; Grady and Webster, 1986; Mabberley, 1987; Webster, 1994; Radcliffe-Smith and Esser, 2001).

Peroxidases (E.C. 1.11.1.X; donor: hydrogen peroxide oxidoreductase) are enzymes that utilize hydrogen peroxide or other peroxides to oxidize a second reducing substrate, which can be a wide variety of organic and inorganic compounds. Peroxidases act as antioxidant enzymes by protecting cells and tissues against the toxic effects of peroxides. They are also involved in a variety of defense mechanisms toward pathogens based on the so called oxidative burst, in which the levels of H_2O_2 and other reactive oxygen species (mainly superoxide) rapidly increase (Moerschbacher, 1992; Lamb and Dixon,

1997; **Blee** *et al.*, **2001**). In addition, these enzymes are directly involved in the synthesis of important metabolites in plants (**Passardi** *et al.*, **2007**).

Peroxidases can be divided into three classes, on the basis of amino acid sequence: class I includes bacterial, fungal and intracellular the mitochondria enzymes in chloroplasts; class II consists of secretory fungal peroxidases such as manganese peroxidase and lignin-degrading peroxidases; class III consists of secretory plant peroxidases. Best examples of class III peroxidases are the enzymes extracted from horseradish, peanut, barley and the latex Euphorbia (Medda et al., 2003).

Typically, class III peroxidases may exist under an extremely high number of isoforms within the same species, potentially implicated in different functions (Veitch, 2004). Plant peroxidases are receiving increasing attention due to their extensive potential in clinical, biochemical, biotechnological as well as industrial applications (Ryu et al., 1993; Kim and Moon, 2005).

The only source of commercial peroxidase is from horseradish roots (Kamal and Behere, 2008), which are cultivated in cool climates but not in Egypt. Economic sources

of the enzyme include a limited number of plants such as turnip (Hamed *et al.*, 1998), soybean (Sessa and Anderson, 1981), peanut (Hu and Van Huystee, 1989), animals and a few species of microorganisms (Kanayama *et al.*, 2002).

Currently, peroxidases are used in organic synthesis for the production of polymers and for the biotransformation of various drugs and chemicals (Colonna et al., 1999; Mohamed et al., 2008^a). These enzymes could also be exploited for the detoxification and remediation of various aromatic pollutants such as phenols, aromatic amines, 2,4,6-trinitrotoluene and dyes which are present in waste water/industrial effluents coming out from several industries such as textile, dyes, printing, paper and pulp (McEldon and Dordick, 1996; Akhtar et al., 2005^a).

Peroxidase can promote a large variety of reactions; therefore it can exhibit a degree of versatility unsurpassed by any other enzyme (Clemente, 1998). A class III cationic peroxidase was isolated from the latex of the Mediterranean shrub *Euphorbia characias* and its main biochemical features were characterized (Medda *et al.*, 2003).