

DEVELOPING AN OPTIMIZATION-SIMULATION TOOL USING GLOBAL OPTIMIZATION TECHNIQUES TO OPTIMIZE OPERATING CONDITIONS OF LARGE-SCALE PLANT

By

Salah Hamdy Mohamed Bayoumy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

DEVELOPING AN OPTIMIZATION-SIMULATION TOOL USING GLOBAL OPTIMIZATION TECHNIQUES TO OPTIMIZE OPERATING CONDITIONS OF LARGE-SCALE PLANT

By
Salah Hamdy Mohamed Bayoumy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Dr. Sahar Mohamed El-Marsafy Dr. Tamer Samir Ahmed

Professor, Chemical Engineering
Department
Faculty of Engineering, Cairo University

Associate Professor, Chemical Engineering
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

DEVELOPING AN OPTIMIZATION-SIMULATION TOOL USING GLOBAL OPTIMIZATION TECHNIQUES TO OPTIMIZE OPERATING CONDITIONS OF LARGE-SCALE PLANT

By
Salah Hamdy Mohamed Bayoumy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Dr. Sahar Mohamed El-Marsafy

Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Dr. Tamer Samir Ahmed

Assoc. Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Dr. Mai Mohamed Kamal

Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Eng. Sherif Hassan Hadara

Former Egyptian Minister of Petroleum and Mineral Resources

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Salah Hamdy Mohamed Bayoumy

Date of Birth: 09/07/1990 **Nationality:** Egyptian

E-mail: salah.bayoumy@gmail.com

Phone: 01148854454

Address: 2-El-Ansary St. branched of Ghazwet

Badr St., Omrania Gharbia, Giza.

Registration Date: 1/10/2014

Awarding Date: 2016

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Dr. Sahar El-Marsafy

Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Dr. Tamer Samir Ahmed

Assoc. Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Examiners:

Dr. Sahar Mohamed El-Marsafy

Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Dr. Tamer Samir Ahmed

Assoc. Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Dr. Mai Mohamed Kamal

Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University

Eng. Sherif Hassan Hadara
Former Egyptian Minister of Petroleum and Mineral Resources

Title of Thesis:

DEVELOPING AN OPTIMIZATION-SIMULATION TOOL USING GLOBAL OPTIMIZATION TECHNIQUES TO OPTIMIZE OPERATING CONDITIONS OF LARGE-SCALE PLANT.

Kev Words:

Stochastic Optimization Techniques; HYSYS Automation; MATLAB-HYSYS Linkage; Sensitivity Analysis Studies; Saturated Gas Plant.

Summary:

This research work introduces a feasible optimization-simulation tool for optimization of continuous variables to the whole plant that includes fractionation section with multi-component feeds, pumps, heat exchangers and compressors rather than quite a few individual units (not complete plants) that was studied before. The goal of this research work is to establish firstly a steady state model for a new saturated gas plant that exists in a certain oil refinery plant to be compatible with two different modes (design mode and future mode) to produce LPG and Stabilized Naphtha. The chief goal of the present work is to introduce lastly an interface which facilitates the interaction between Aspen HYSYS ® and MATLAB® for evolving an optimization-simulation tool which can stand on the optimum operating conditions. Sensitivity analysis study should be accomplished before and after optimization on the steady state model to enhance adequacy of the results in terms of maximum C4 recovery and minimum total annual cost.

Acknowledgments

I would like to express my sincere thanks and deep gratitude to our kind, merciful and great God for giving me the ability and patience to complete this work and present it in this form.

I would like to express my sincere appreciation to my advisors Dr. Sahar El-Marsafy- Professor, Chemical Engineering Department, Faculty of Engineering, Cairo University - for her kind supervision, valuable suggestion, and continuous support.

Thanks are also to Dr. Tamer - Assoc. Professor, Chemical Engineering Department, Faculty of Engineering, -Cairo University- for his valuable supervision, support, extensive guidance and persistent encouragement.

I want to thank all those whose guidance, advice and help made it possible for this work to emerge in its final form as presented. Thanks are also to the Chemical Engineering Department and its staff for providing support and guidance whenever needed.

Finally, lots of love and gratitude are due to my family. I would like to thank my mother and my brother for their patience, effort, assistance, and time they spent to help me to complete this work.

Table of Contents

ACKNOWLE	DGMENTS	V
TABLE OF C	ONTENTS	VI
LIST OF TAE	BLES	IX
LIST OF FIG	URES	X
NOMENCLA	TURE	XI
ABSTRACT		XIII
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE SURVEY	3
2.1.	Introduction	3
2.2.	REFINERY BACKGROUND	3
2.3.	LIGHT-END PROCESSING UNITS IN REFINERY PLANTS	6
2.3.1.	Saturated Gas Plant	
2.3.2.	Un-saturated Gas Plant	9
2.4.	SOFTWARE PACKAGES	10
2.4.1.	Aspen Tech HYSYS Simulation Package V8.6 ®	10
2.4.2.	MATLAB ®	10
2.4.3.	HYSYS Automation	10
2.5.	OPTIMIZATION-SIMULATION FRAMEWORKS	11
CHAPTER 3	STATEMENT OF THE PROBLEM	14
CHAPTER 4	GENERAL METHODOLOGY	15
4.1.	PROBLEM FORMULATION	15
4.1.1.	Process Model	15
4.1.2.	Objective Function	16
4.2.	SENSITIVITY ANALYSIS	17
4.3.	OPTIMIZATION ALGORITHMS	17
4.3.1.	Derivative-based Algorithms	17
4.3.2.	Stochastic Optimization Techniques	
4.3.2.1.	Simulation Model Coupled with GA Algorithm	
4.3.2.2.	Simulation Model Coupled with PSO Algorithm	
4.4.	MATLAB-HYSYS LINKAGE'S PROBLEMS	
CHAPTER 5	SIMULATION PROBLEM: A CASE STUDY	23
5.1.	Introduction	23
5.2.	PROCESS DESCRIPTION	23
5.3.	PROCESS DESIGN BASIS	27
5.3.1.	Fluid Package	27
5.3.2.	Feed Characterization	27
5 3 2 1	Foods Composition	27

5.3.2.2.	Pseudo-Components Properties	
5.3.2.3.	Design Feed Flow Rates	
5.3.2.4.	Feed Conditions	
5.3.3.	Sponge Oil Characterization	
5.3.4.	Product Specifications	
5.3.5.	Assumptions List	42
CHAPTER 6 SI	MULATION METHODOLOGY	43
6.1.	INTRODUCTION	43
6.2.	MAIN PROCESSING UNITS	43
6.2.1.	Pre-treatment Facilities	43
6.2.1.1.	Compression Station Package	44
6.2.1.2.	Naphtha Receiving Three Phase Separator	44
6.2.2.	Fractionation Train	44
6.2.2.1.	Deethanizer Tower	
6.2.2.2.	Debutanizer Tower	
6.2.2.3.	Sponge Absorber Tower	
6.2.2.4.	Thermal Task Integration	
6.2.2.4.1. 6.2.2.4.2.	Deethanizer ReboilerLiquid / Liquid Exchanger	
6.3.	SENSITIVITY ANALYSIS ON HYSYS MODEL	
6.3.1.	The Implicit-Constraints of Local and Global Optimization	
6.3.2.	New Fractionation Area Local Optimization	
6.3.3.	Optimum Operating Pressure Selection Criteria	
6.3.4.	Number of Stages Selection Criteria	50
CHAPTER 7 G	LOBAL OPTIMIZATION-SIMULATION METHODOLOGY	V 51
CIMI IER / G		1
7.1.	Introduction	51
7.2.	OBJECTIVE FUNCTION	51
7.2.1.	Capital Cost	52
7.2.1.1.	Capital Cost for Heat Exchangers	
7.2.1.2.	Capital Cost for Distillation Towers	
7.2.2.	Operating Cost	53
7.3.	HYSYS MODEL COUPLED WITH GA ALGORITHM	
7.4.	HYSYS MODEL COUPLED WITH PSO ALGORITHM	
CHAPTER 8 R	ESULTS AND DISCUSSION	
8.1.	INTRODUCTION	
8.2.	SENSITIVITY ANALYSIS STUDY OUTCOMES AND DISCUSSION	58
8.2.1.	The Optimum Number of Stages for Debutanizer	58
8.2.2.	The Optimum Number of Stages for Deethanizer	59
8.2.3.	Impact of Lean Oil Recycled Amount on Base and Future Model	
8.2.4.	Constrained Bounds for Base Case Model	
8.2.5.	Constrained Bounds for Future Mode Model	
8.3.	OPTIMIZATION-SIMULATION KEY FINDINGS AND DISCUSSION	
8.3.1.	Key Findings from Using GA	
8.3.1.1. 8.3.2.	GA's Results Validation	
8.3.2.1.	PSO's Results Validation	
0.2.2.1.	1 DO B REBUILD Y AMUALIUM	1)

8.3.3.	Validation of The Produced Optimum Operating Conditions by	
Comparis	on between The Produced Results from Both GA and PSO	74
8.3.4.	Internal Temperature Profile along The Distillation Towers	75
CHAPTER 9	CONCLUSIONS AND RECOMMENDATIONS	76
9.1.	Conclusions	76
9.2.	RECOMMENDATIONS	77
REFERENC	ES	78
APPENDIX	A HYSYS-MATLAB INTERFACE CODE	81
APPENDIX	B INTERNAL TEMPERATURE PROFILES	86
APPENDIX	C OVERALL HYSYS GUI	88

List of Tables

Table 5.1: Vapor feed composition from CDU (1) in mole %	28
Table 5.2: Vapor feed composition from CDU (2) in mole %	30
Table 5.3: Light naphtha composition from CDU (1) in wt%	31
Table 5.4: Light naphtha composition from CDU (2) in wt%	34
Table 5.5: NHT sour off-gas composition in mole % (Shukair)	37
Table 5.6: Isomerization off gas composition in mole % (Shukair)	37
Table 5.7: CCR off spec LPG composition in wt. % (Shukair)	37
Table 5.8: CCR off gas composition in wt. % (Shukair)	
Table 5.9: Hypo-components properties	
Table 5.10: Design feed flow rates	39
Table 5.11: Operating conditions of feed streams	40
Table 5.12: Sponge oil ASTM D-86 distillation curve	41
Table 5.13: Light-end analysis	41
Table 5.14: Sponge oil tie-in conditions	41
Table 5.15: Product specifications	42
Table 8.1: Effect of split ratio for the lean oil for the base case. Deethanizer theoretic	cal
stages = 25; Debutanizer stages = 10.	61
Table 8.2: Effect of split ratio for the lean oil for the future mode. Deethanizer	
theoretical stages = 25; Debutanizer stages = 10.	63
Table 8.3: Constrained bounds for design variables for base case	66
Table 8.4: Constrained bounds for design variables for future mode	66
Table 8.5: Computational outputs from GA for the base case	67
Table 8.6: Computational outputs from GA for the future mode	
Table 8.7: Computational outputs from PSO for the base case (first interval)	69
Table 8.8: Computational outputs from PSO for the base case (second interval)	70
Table 8.9: Computational outputs from PSO for the future mode (first interval)	71
Table 8.10: Computational outputs from PSO for the future mode (second interval).	72
Table 8.11: Computational outputs from PSO for the future mode (third interval)	73
Table 8.12: Optimum operating conditions in the base case and the future mode by	
using GA	74
Table 8.13: Optimum operating conditions in the base case and the future mode by	
using PSO	74

List of Figures

Figure 2.1: Topping refinery model configuration	4
Figure 2.2: Hydro-skimming refinery model configuration	5
Figure 2.3: General scheme of complex refinery plant	6
Figure 2.4: Chemical structure for some paraffinic compounds	
Figure 2.5: Chemical structure for some olefin compounds	7
Figure 2.6: Absorption-fractionation SGP in shape of standalone columns	8
Figure 2.7: Absorption-fractionation saturated gas plant in shape of one column	9
Figure 2.8: Un-saturated gas plant (catalytic cracker gas plant) block flow diagram	9
Figure 2.9: A typical process module with the necessary interconnections	
Figure 4.1: Mechanism of extracting information from HYSYS	
Figure 4.2: The numerical noise in the transferred data at the same design variables.	18
Figure 4.3: The numerical noise in the derivatives the same design variables	
Figure 5.1: Simple schematic block flow diagram for the base case	
Figure 5.2: Simple schematic block flow diagram for the future mode	
Figure 6.1: Compression package and naphtha receiving three phase separator	
Figure 6.2: Configuration of Deethanizer tower	
Figure 6.3: Configuration of Debutanizer tower	
Figure 6.4: Configuration of sponge oil absorber	
Figure 6.5: Deethanizer reboiler	
Figure 6.6: Run down feed pre-heater	
Figure 7.1 Logical flowchart for the GA proposed algorithm	
Figure 7.2: Logical flowchart for the PSO proposed algorithm	
Figure 8.1: Optimization for number of stages of Debutanizer	
Figure 8.2: Feed stage location optimization at split ratio=0.5	
Figure 8.3: Optimization for number of stages of Deethanizer	60
Figure 8.4: Impact of lean oil recycle amount on operating bottom pressure of	
Deethanizer in each of future mode and base case	64
Figure 8.5: Impact of lean oil recycle amount on operating bottom temperature of	
Deethanizer in each of future mode and base case	
Figure B.1: Internal temperature profile of Deethanizer in the base case	
Figure B.2: Internal temperature profile of Deethanizer in the future mode	
Figure B.3: Internal temperature profile of Debutanizer in the base case	
Figure B.4: Internal temperature profile of Deethanizer in the future mode	
Figure C.1: HYSYS GUI for base case	
Figure C.2: HYSYS GUI for future mode	89