Prevalence and Risk Factors of Attention Deficit- Hyperactivity Disorder In School Children

Thesis

Submitted for the fulfillment of Ph.D Degree in Medical Childhood Studies Child Health and Nutrition Medical Studies Department

by **Mona Hussein Osman**

M.B. B.Ch- M. Sc. Medical Childhood Studies

Supervised by

Dr. Maisa Nasr Farid

Professor of Pediatrics
Institute of Postgraduate Childhood
Studies
Ain Shams University

Dr. Sahar Mohammed Sabbour

Ass. Professor of Public Health Faculty of Medicine Ain Shams University

بسم الله الرحمن الرحيم

ACKNOWLEDGMENT

I wish to express my great thanks, sincere gratitude and appreciation to Dr. Maisa Nasr Farid, Professor of pediatrics in Institute of postgraduate childhood studies, Ain Shams University for giving me the honor of working under her supervision. Her enthusiastic support, guidance, constructive caring commands, kind encouragement and above all, her inspiring supervision throughout the whole work was of great help.

My profound gratitude and sincere appreciation go to Dr. Sahar Mohammed Sabbour, Assistant Professor of Public Health Faculty of Medicine, Ain Shams University. She offered me valuable help, contribution, and advices. My deepest thanks and gratefulness are for her kind encouragement, great co-operation and support, unforgettable assistance, precious suggestions and valuable time she had devoted generously throughout the work.

In all gratitude, I would like to express my most sincere thanks to all directors, staffs, and children of El-Nasr private school and El-Gabarty public school for their kind help and support.

Finally, I would like to send my best regards and great thanks to my husband and my children who suffered a lot with me during accomplishing this work.

Prevalence and risk factors of Attention Deficit Hyperactivity Disorder in school children

Farid MN*, Sabbour SM**, and Osman MH***

- *Professor of Pediatrics, Institute of Postgraduate Childhood Studies Ain Shams University
- **Assistant Professor of Public Health Faculty of Medicine Ain Shams University
- *** Master medical childhood studies

Abstract

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is among the most common childhood psychiatric disorders which interfere with social and educational development. Findings showed a number of diverse risk factors concerning their pre, peri and postnatal history, neuropsychomotor development, and family environment that may be related with the disorder. **OBJECTIVES**: determine the prevalence of ADHD, comorbid disorders and risk factors in school children and comparing results of this study with previous one done by Ghanem et al., (1997). METHODS: Total sample included 3197 students (1780 M and 1417 F) from KG1 up to the 6th grade, 4 to 13 years of age in two primary schools in Cairo. The study was performed in two stages. First stage: was a cross-sectional descriptive study where teachers detected children possibly having ADHD using the DuPaul ADHD rating scale (a teacher questionnaire). Further evaluation using DSM-IV was done to confirm ADHD symptoms and comorbid psychiatric disorders. Second stage: was a case-control study where ADHD risk factors were evaluated by comparing ADHD cases (251) with (330) controls matched by age and sex using a pre-designed parents' questionnaire. RESULTS: A total of 251 (7.9%) of schoolchildren had ADHD diagnosis which is significantly more than that of Ghanem et al., study (6.1%). Prevalence was 3.2 times more common in boys than girls (11.2%, 3.7%) respectively p<0.01. Hyperactivity and combined types of ADHD were significantly higher among boys p <0.05, while inattention was significantly higher among girls. Comorbid disorders revealed were ODD in 34.7%, CD in 16.3%, enuresis 30.3%, anxiety 15.1%, depression in 5.6% and low academic achievement in 45.8%. More cases had positive family history of ADHD than controls (14.9%, 5% OR 3.34), were living apart from one or both parents (12.9%, 5% OR 0.35), of working mothers (52.1%, 35% OR 2.02), being a middle-born children (28%, 18.9%), of fathers and mothers with low educational levels (28%, 18.2% for fathers and 31.1%, 22.6% for mothers), received O2 therapy in neonatal period (3.7%, 0.5%), consume soda drinks/canned juices daily (50.3%, 38.9% OR 1.59), eat chocolate daily (47.7%, 36.9% OR 1.56) and/or suffering from visual disturbances (15.5%, 7.9%). No significant difference was found for maternal or paternal age at child birth, exposure to passive smoking, pregnancy or labor hazards, breast feeding or artificial feeding, TV watching, frequency of internet use or computer/video game playing, consumption of packed snacks/chips, sweets/lollypops. **CONCLUSIONS**: ADHD prevalence in school children is similar to other studies. M: F ratio is 3.2: 1. Some factors as family history, living apart from one or both parents, being a middle-born child, receiving O2 therapy in neonatal period, having a working mothers or parents with low educational level, consuming soda drinks/canned juices or eat chocolate daily and/or suffering from visual disturbances were identified that increase the risk for the disorder that should receive attention.

Key words: ADHD, ODD, CD, academic achievement, school children, risk factors, internet, videogame.

TABLE OF CONTENTS

INTRODUCTION AND AIM OF THE WORK	1	
REVIEW OF LITERATURE	3	
HISTORY AND TERMINOLOGY	3	
PREVALENCE ACROSS COUNTRIES		
ETIOLOGY AND RISK FACTORS	12	
I. Genetic Factors		
II. Neurobiological and Neuropsychiatric Factors	17	
Neurotransmitters	21	
Neuroimaging findings	22	
Structural neuroimaging	23	
Functional neuroimaging	24	
Neurophysiology	26	
III. Environmental Factors	28	
1. Perinatal Risk Factors	28	
Low birth weight (LBW)	30	
Smoking	31	
Seasons	32	
2. Parental and family Risk Factors	32	
3. Acquired neurobiological Risk Factors	34	
Closed head injury		
Lead exposure	35	
Thyroid hormones	36	
Role of diet and nutritional factors	36	
Food additives, colorings, preservatives, and sugar	36	
Protein energy Malnutrition	37	
Long-chain polyunsaturated fatty acids (LC-PUFA)	37	
Zinc deficiency	37	
Magnesium deficiency Breastfeeding	48 48	
Media	39	
Television watching	39	
Internet and video games	39	
CLINICAL FEATURES	40	
DIAGNOSIS	42	
Diagnostic criteria	44	
Laboratory examination	47	
Rating scales	48	
Examples of broad-band scales		
Examples of narrow-band scales		

COMORBIDITIES AND DIFFERENTIAL DIAGNOSIS			
Conduct Disorder			
Oppositional Defiant Disorder			
Learning disorders (learning disabilities)			
Anxiety Disorders			
Mood Disorders (Bipolar Disorder)	59		
Other comorbidities and differential diagnosis	61		
TREATMENT	63		
I. Medication	64		
Pharmacotherapy guidelines	69		
II. Psychosocial interventions	69		
III. Complementary and alternative medicine	74		
Multimodal treatment of children with ADHD	78		
Course and prognosis			
SUBJECTS AND METHODS	82		
RESULTS	95		
DISCUSSION	130		
RECOMMENDATIONS	162		
SUMMARY AND CONCLUSION	164		
REFERNCES	170		
APPENDIX	203		
أستبيان لقياس العوامل المختلفة التي تؤثر على ظاهرة "اضطراب فرط الحركة و			
نقص الأنتباه" بين أطفال المدارس			
ARABIC SUMMARY			

LIST OF ABBREVIATIONS

ADD	Attention-Deficit Disorder		
ADHD	Attention-Deficit/Hyperactivity Disorder		
AAP	American Academy of Pediatrics		
APA	American Psychiatric Association		
BASC	Behavior Assessment System for Children		
CAM	Complementary and Alternative Medicine		
CBCL	Child Behavior Checklist		
CBT	Cognitive Behavior Therapy		
CD	Conduct Disorder		
CHI	Closed Head Injury		
CI	Confidence Interval		
CNS	Central Nervous System		
CT	Computed Tomography		
DAT	Dopamine Transporter Gene		
DSM	The American Psychiatric Association's Diagnostic and		
	Statistical Manual of Mental Disorders		
DSM-II	The second edition of the Diagnostic and Statistical		
	Manual of Mental Disorders		
DSM-III	The third edition of Diagnostic and Statistical Manual of		
	Mental Disorders		
DSM-III-R	The third edition of Diagnostic and Statistical Manual of		
	Mental Disorders-Revised		
DSM-IV	The fourth edition of Diagnostic and Statistical Manual		
	of Mental Disorders		
DSM-IV-TR	The fourth edition of Diagnostic and Statistical Manual		
	of Mental Disorders-Text Revision		
DRD2	Dopamine D2 Receptors		
DRD4	Dopamine D2 Receptors		
EEG	Electroencephalogram		
Erc-Mg	Intraerythrocyte magnesium		
ETS	Exposure To Tobacco-Smoke		
fMRI	functional Magnetic Resonance Images		
Freq	Frequency		
GAD	Generalized Anxiety Disorder		
HTR2A	Serotonin Receptor 2a Genes		
ICD	International Statistical Classification of Diseases and		
I	D 1 . 1II 11 D 11		

Related Health Problems

IQ Intelligence Quotient

ICD-9 International Classification of Diseases 9th RevisionICD-10 International Classification of Diseases 10th Revision

LBW Low birth weight

LC-PUFA Long-chain Polyunsaturated Fatty Acids

LD Learning Disorders
MAO Monoamine Oxidase

MDD Major Depressive DisorderMg-B6 Magnesium-vitamin B6MRI Magnetic Resonance Image

MTA Multimodal treatment study of children with ADHD

O2 Oxygen

OCD Obsessive Compulsive Disorder
ODD Oppositional Defiant Disorder

OR Odds Ratio

PET Positron Emission Tomography
PSC Pediatric Symptoms Checklist

QEEG Quantitative EEG SD Standard Deviation

SGA Small for Gestational Age

SNAP Synaptosomal-Associated Protein

SPECT Single-Photon Emission Computed Tomography

SSRI Selective Serotonergic Reuptake Inhibitors

T3 Tri-iodothyronineTBI Traumatic Brain InjuryTPH Tryptophan Hydroxylase

TV Television

VARETA Variable Resolution Electromagnetic Tomography

WHO World Health Organization

WM Working Memory

χ² Chi square

LIST OF TABLES

	RESULTS			
TABLE 3.1	Percentage of ADHD among boys and girls according to			
TABLE 3.2	type of selected schools	100		
1ABLE 3. 2	Distribution of ADHD cases according to grades in	100		
TADLE 2 2	selected private and public schools	102		
TABLE 3.3	Different ADHD subtypes according to gender and school	102		
TABLE 3.4	31 & &			
TABLE 2.5	different grades in selected schools	103		
TABLE 3.5	<i>J</i> 1 <i>C</i>			
TABLE 2.6	groups of selected schools			
TABLE 3.6	Percentage of different ADHD comorbidities in relation to 10.			
TADLE 2.7	gender in selected schools	106		
TABLE 3.7	\mathcal{E}			
TABLE 3.8	type of selected schools Distribution of different ADHD comorbidities in different	107		
TABLE 5.8		107		
TABLE 2.0	age groups of selected schools	100		
TABLE 3.9	Distribution of ADHD cases in selected schools according	108		
TADLE 2 10	to intelligence quotient (IQ)	109		
TABLE 3. 10	Comparison between boys and girls in selected schools as	109		
TABLE 2.11	regards IQ	100		
TABLE 3.11	Comparison between ADHD children in selected private 10			
TABLE 2 12	and public school as regards IQ			
TABLE 3. 12	Distribution of cases and controls in selected schools 11			
TABLE 3.13	according to maternal age at childbirth			
IADLE 5.15	Distribution of cases and controls in selected schools 113			
TABLE 3.14	according to paternal age at childbirth			
1ADLE 3.14	Distribution of cases and controls in selected schools 11			
TABLE 3.15	according to educational level of fathers			
1ABLE 3.13	Distribution of cases and controls in selected schools 114			
TADIE 2 16	according to educational level of mothers Distribution of cases and controls in selected schools	115		
TABLE 3.16				
TABLE 3.17	according to maternal and paternal smoking Distribution of cases and controls in selected schools	115		
TABLE 3.1/		113		
TABLE 3.18	according to passive exposure to smoking (ETS) Distribution of cases and controls in selected schools	116		
TABLE 3.18	according to maternal negative ETS during pregnancy	110		
TABLE 3.19		116		
TABLE 3.19				
TABLE 3.20	regards mothers' occupation Distribution of cases and controls in salacted schools as	117		
1ADLE 3.20				
TABLE 3.21	regards family history			
1ADLE 3.21				
TABLE 3.22	according to different chronic illnesses Comparison between cases and controls in selected schools 11			
TABLE 3.22	Comparison between cases and controls in selected schools as regards duration of breast feeding			
TABLE 2 22		119		
TABLE 3.23	Comparison between cases and controls in selected schools	117		

	as regards time of introduction of artificial feeding	
TABLE 3.24	Comparison between cases and controls in selected schools	
	as regards gestational age	
TABLE 3.25	Comparison between cases and controls in selected schools	120
	as regards birth weight	
TABLE 3.26	Comparison between cases and controls in selected schools	121
	as regards any pregnancy hazards	
TABLE 3.27	Comparison between cases and controls in selected schools	122
	as regards any labor hazards	
TABLE 3.28	Comparison between cases and controls in selected schools	123
	as regards any neonatal hazards	
TABLE 3.29	Comparison between cases and controls in selected schools	124
	as regards any infants' hazards	
TABLE 3.30	Distribution of cases and controls in selected schools	125
	according to TV watching	
TABLE 3.31	Distribution of cases and controls in selected schools	125
	according to the use of internet and computer/video games	
TABLE 3.32	Comparison between cases and controls in selected schools	126
	as regards consumption of carbonated beverages or canned	
	juices	
TABLE 3.33	Comparison between cases and controls in selected schools	126
	as regards chocolate consumption	
TABLE 3.34	Comparison between cases and controls in selected schools	127
	as regards consumption of chips, snacks or crisps	
TABLE 3.35	Comparison between cases and controls in selected schools	127
	as regards consumption of sweets, candies, gums and lolly	
	pops	
TABLE 3.36	Comparison between cases and controls in selected schools	127
	as regards biscuit consumption	100
TABLE 3.37	Comparison between current study and previous one done	128
	by Ghanem et al., 1997	

LIST OF CHARTS AND FIGURES

RESULTS				
CHART 1	Distribution of population and sample children (boys and girls) in private and public schools			
FIGURE 1	Percentage of ADHD among children in selected schools			
FIGURE 2	Percentage of ADHD in selected private and public school			
FIGURE 3	Percentage of ADHD in boys and girls regarding different grades in selected schools			
FIGURE 4	Percentage of ADHD in selected private and public schools regarding different school grades			
FIGURE 5	Percentage of different ADHD subtypes in selected schools for both sexes			
FIGURE 6	Percentage of different ADHD subtypes in boys and girls in selected schools			
FIGURE 7	Percentage of any comorbidity with ADHD in selected schools			
FIGURE 8	Percentage of different ADHD comorbidities in selected schools			
FIGURE 9	Distribution of ADHD cases in selected schools according to intelligence quotient (IQ)			
FIGURE 10	Distribution of ADHD children in selected private and public schools as regards different social classes			
FIGURE 11	Distribution of cases and controls in selected schools as regards different social classes			
FIGURE 12	Distribution of cases and controls in selected schools according to family size			
FIGURE 13	Distribution of cases and controls in selected schools according to type of family children live with			
FIGURE 14	Distribution of cases and controls in selected schools according to sib-order			
FIGURE 15	Comparison between cases and controls in selected schools as regards different pregnancy hazards			
FIGURE 16	Comparison between cases and controls in selected schools as regards different labor hazards			
FIGURE 17	Comparison between cases and controls in selected schools as regards different neonatal hazards			
FIGURE 18	Comparison between cases and controls in selected schools as regards different infants' hazards	124		

INTRODUCTION 1

Introduction

Child psychiatric disorders result in suffering for children and those around them, interfere with social and educational development, and can lead to life-long social and psychiatric problems (Rutter, 1996). Attention deficit hyperactivity disorder (ADHD) is among the most common childhood psychiatric disorders which presents with inattention, hyperactivity, impulsivity, academic underachievement, or behavior problems (American Academy of Pediatrics, 2000). Comorbid conditions often accompany the disorder and some of them are potentially life-threatening conditions.

Prevalence estimates ranges from 4% to 8% across cultures (*Visser et al.*, 2007), and 3%-5% of prepubertal elementary school children (*Havey et al.*, 2005). Previously, a prevalence of 6.1% was found among a sample of Egyptian school children (*Ghanem et al.*, 1997). Throughout the world its prevalence varies widely and it reached up to 20% of grade school children in Colombia (*Cornejo et al.*, 2005), and 17.1% in Brazil (*Vasconcelos et al.*, 2003). It is most frequently identified during elementary school years; however the onset of ADHD frequently occurs earlier, with presentation as young as 3 years of age (*Greenhill et al.*, 2008). Teachers are often the primary source of information regarding ADHD diagnoses in school children however; they are likely to identify children at rates higher than the expected prevalence rates specified in DSM-IV (*Havey et al.*, 2005). It is diagnosed much more often in boys than in girls (*St Sauver et al.*, 2004; *Stubbe et al.*, 2005).

According to the literature, ADHD is a syndrome produced by multiple causes that depend on genetic factors and environmental and social adversities. Nutritional factors play major roles as well. The issue on the role of food preservatives and artificial colorings in ADHD remains controversial (*Boris & Mandel 1994; Cruz & Bahna, 2006*). Exposure to tobacco smoke in utero is suspected to be associated with ADHD symptoms in children (*Linnet et al., 2003*). Findings showed a

INTRODUCTION 2

number of diverse risk factors concerning their pre, peri and postnatal history, neuropsychomotor development, and family environment that may be related with the disorder (*Poeta & Rosa Neto 2006; Hurtig et al.*, 2007).

The internet, video games and other media types are reported to have important social and mental health effects in children and adolescents. However they showed inconsistent findings between their use and ADHD (Yoo et al., 2004; Chan & Rabinowitz, 2006; Bioulac et al., 2008).

Hypothesis

<u>This study hypothesized that</u>: Many factors could contribute to the development of ADHD as perinatal complications, family and social factors as large family size, family distortion, and first borne child, excessive use of non-nutritional food additives as well as the change of the Egyptian life style as a result of excessive use of internet and video games.

Aim of the study

To determine:

- 1. The prevalence of ADHD and comorbid disorders accompanying it in elementary school-aged children in Cairo.
- 2. Possible risk factors which may have role in the etiology of ADHD.
- 3. The effect of life style changes; as excessive use of TV, computer, internet and video games on the prevalence of ADHD in recent years by comparing results of this study with previous one done by Ghanem et al., (1997) where ADHD prevalence was 6.1%.

Attention-Deficit/Hyperactivity Disorder

(ADHD)

REVIEW OF LITERATURE

HISTORY AND TERMINOLOGY

It has been argued that ADHD is a typical result of the adverse conditions of modern society; in such a situation it can be useful to go back in the history of medicine. There is considerable evidence to suggest that ADHD is not a recent phenomenon; 2500 years ago, the great physician-scientist, Hippocrates described a condition that seems to be compatible with what we now know as ADHD. He described patients who had.... "Quickened responses to sensory experience, but also less tenaciousness because the soul moves on quickly to the next impression". Hippocrates attributed this condition to an "overbalance of fire over water". His remedy for this "overbalance" was "barley rather than wheat bread, fish rather than meat, water drinks, and many natural and diverse physical activities"(ADHD.org.nz, 2005).

The typical symptoms of ADHD were, however, described as early as 1846 by Heinrich Hoffmann, a physician who later founded the first mental hospital in Frankfurt. Interestingly, his description was published in a children's book entitled "Struwwelpeter" which he had designed for his 3-year-old son Carl Philip. The symptomatology is impressively depicted in the colorfully illustrated story of "Zappel-Philipp" ("Fidgety Philip"), probably the first written mention of ADHD by a medical professional.

It is astonishing how clearly the typical symptoms of ADHD are depicted in Hoffmann's book. Many of the international classification of diseases, 10th revision (ICD-10) criteria for ADHD are fulfilled: Philip fails to